K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác MBE và tam giác MCA có:

MB = CM (AM là trung tuyến của tam giác ABC => M là trung điểm của BC)

BME = CMA (2 góc đối đỉnh)

AM = EM (gt)

=> Tam giác MBE = Tam giác MCA (c.g.c)

=> BE = CA (2 cạnh tương ứng)

=> MEB = MAC (2 góc tương ứng)

mà 2 góc này ở vị trsi so le trong

=> BE // AC

b.

BE // AC (theo câu a)

=> AFD = BED (2 góc so le trong)

Xét tam giác DFA và tam giác DEB có:

AFD = BED (chứng minh trên)

DF = DE (gt)

FDA = EDB (2 góc đối đỉnh)

=> Tam giác DFA = Tam giác DEB (g.c.g)

=> FA = EB (2 cạnh tương ứng)

mà EB = AC (theo câu a)

=> FA = AC

=> A là trung điểm của FC

c.

Tam giác ABC có:

AB < AC (gt)

mà AC = EB (theo câu a)

=> AB < EB

=> BEM < BAM (quan hệ giữa góc và cạnh đối diện trong tam giác)

mà BEM = CAM (tam giác MBE = tam giác MCA)

=> CAM < BAM

Chúc bạn học tốtok

6 tháng 5 2016

Phương An giúp mình làm bài hình còn lai được không?

đề nè

cho góc nhọn xOy; trên tia Ox lấy A(A#O); trên tia Oy lấy điểm B (B # O)sao cho OA = OB; kẻ ACvuông góc với OY (CE Oy) ; BD vuông góc Ox ( D E Ox); I là giao diểm của AC và BD
a. chứng minh tam giác AOC= tam giác BOD
b. So sánh IC và IA
c. Chứng minh tam giác AIB cân         
d. Chứng minh góc IAB=M góc 1\2 góc AOB     

17 tháng 5 2019

đề bài phần a bị sai nhé bn , phải là BE // AC mới đúng

a ) Xét tam giác AMC và tam giác EMB có :

MA = ME ( gt )

\(\widehat{EMB}=\widehat{AMC}\) ( hai góc đối đỉnh )

MB = MC ( do AM là đường trung tuyến )

nên tam giác AMC = tam giác EMB ( c.g.c )

=> \(\widehat{CAM}=\widehat{MEB}\)

Mà hai góc này ở vị trí so le trong => BE//AC

17 tháng 5 2019

um câu a mk chép sai đề 

BE // AC nha 

a: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: BE//AC và BE=AC

b: Xét tứ giác AFBE có

D là trung điểm của AB

D là trug điểm của FE

Do đó: AFBE là hình bình hành

Suy ra: AF//BE và AF=BE

=>AC//AF và AC=AF

=>A là trung điểm của CF

c: Ta có: góc BAM=góc AEC

mà góc AEC>góc CAM

nên góc BAM>góc CAM

25 tháng 4 2021

a) Xét ΔMAB và ΔMEC có 

MA=ME(gt)

ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔMAB=ΔMEC(c-g-c)

Có thể vẽ thêm hình không ạ

Bài 2

Bài làm

a) Xét tam giác ABM và tam giác DCM có:

BM = MC ( Do M là trung điểm BC )

^AMB = ^DMC ( hai góc đối )

MD = MA ( gt )

=> Tam giác ABM = tam giác DCM ( c.g.c )

b) Xét tam giác BHA và tam giác BHE có:

HE = HA ( Do H là trung điểm AE )

^BHA = ^BHE ( = 90o )

BH chung

=> Tam giác BHA = tam giác BHE ( c.g.c ) 

=> AB = BE

Mà tam giác ABM = tam giác DCM ( cmt )

=> AB = CD 

=> BE = CD ( đpcm )

Bài 3

Bài làm

a) Xét tam giác ABD và tam giác ACD có: 

AB = AB ( gt )

BD = DC ( Do M là trung điểm BC )

AD chung

=> Tam giác ABD = tam giác ACD ( c.c.c )

b) Xét tam giác BEC và tam giác MEA có:

AE = EC ( Do E kà trung điểm AC )

^BEC = ^MEA ( hai góc đối )

BE = EM ( gt )

=> Tam giác BEC = tam giác MEA ( c.g.c )

=> BC = AM

Mà BD = 1/2 . BC ( Do D là trung điểm BC )

hay BD = 1/2 . AM

Hay AM = 2.BD ( đpcm )

c) Vì tam giác ABD = tam giác ACD ( cmt )

=> ^ADB = ^ADC ( hai góc tương ứng )

Mà ^ADB + ^ADC = 180o ( hai góc kề bù )

=> ^ADB = ^ADC = 180o/2 = 90o 

=> AD vuông góc với BC                         (1)

Vì tam giác BEC = tam giác MEA ( cmt )

=> ^EBC = ^EMA ( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AM // BC                              (2)

Từ (1) và (2) => AM vuông góc với AD 

=> ^MAD = 90o 

# Học tốt #

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm