K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

Con không biết làm bài này đâu cô ơi

14 tháng 7 2022

loading...

1) \widehat{{BAE}}=\widehat{{EAC}}BAE=EAC (giả thiết). (1)

Vì {AB}AB // {EF}EF nên \widehat{{BAE}}=\widehat{{AEF}}BAE=AEF (hai góc so le trong). (2)

Vì AEAE // FIFI nên \widehat{EAC}=\widehat{IFC}EAC=IFC (hai góc đồng vị). (3)

Vì {AE}AE // {FI}FI nên \widehat{{AEF}}=\widehat{{EFI}}AEF=EFI (hai góc so le trong). (4)

Từ (1), (2), (3), (4) suy ra: \widehat{{BAE}}=\widehat{{EAC}}=\widehat{{AEF}}=\widehat{{IFC}}=\widehat{{EFI}}BAE=EAC=AEF=IFC=EFI.

2) Từ chứng minh trên, ta có: \widehat{{EFI}}=\widehat{{IFC}}EFI=IFC mà {FI}FI là tia nằm giữa hai tia {FE}FE và {FC}FC.

Vậy {FI}FI là tia phân giác của \widehat{{EFC}}EFC.

27 tháng 1 2021

*Tự vẽ hình

a) Có : DE//BC(GT)

            EF//AB(GT)

=> BDEF là hình bình hành

=> BD=EF

Mà : AD=DB(GT)

=> AD=EF (đccm)

b) Ta có : AD=DB(GT)

               DE//BC (GT)

=> DE là đường trung bình của tam giác ABC

=> AE=EC

Có : AE=EC(cmt)

       EF//AB(GT)

=> EF là đường trung bình của tam giác ABC

=> BF=FC

Mà : BF=DE(BDEF-hình bình hành)

=> FC=DE

 Xét tam giác ADE và EFC có :

   AE=EC(cmt)

   AD=EF(cm ý a)

   DE=FC(cmt)

=> Tam giác ADE=EFC(c.c.c)

c) Đã chứng minh ở ý b

27 tháng 1 2021

*Cách khác:

Giải:

Hình bạn tự vẽ nhé.

a) Ta có: BD // EF (vì AB /// EF)

=> Góc BDF = góc DFE (2 góc so le trong)

Vì DE // BC (gt)

nên góc EDF = góc BFD (2 góc so le trong)

Xét tam giác EDF và tam giác BDF có:

Góc BDF = góc DFE (chứng minh trên)

DF là cạnh chung

Góc EDF = góc BFD (chứng minh trên)

=> Tam giác DEF = tam giác FBD (g.c.g)

=> BD = EF ( 2 cạnh tương ứng)   (đpcm)

Mà BD = AD (vì D là trung điểm của AB)

=> AD = EF   (đpcm)

b) Ta có: AB // EF (gt)

=> Góc A = góc CEF (2 góc đồng vị)

Lại có: tam giác DEF = tam giác FBD (chứng minh trên)

=> Góc DEF = góc B (2 góc tương ứng)  (1)

Mà DE // BC (gt)

=> Góc DEF = góc CFE (2 góc so le trong)  (2)

     Góc ADE = góc B (2 góc đồng vị)

Từ (1), (2) => Góc B = góc CFE

Mà góc B = góc ADE (chứng minh trên)

=> Góc ADE = góc CFE 

Xét tam giác ADE và tam giác CEF có:

Góc CEF = góc A (chứng minh trên)

AD = EF (chứng minh trên)

Góc ADE = góc CFE (chứng minh trên)

=> Tam giác ADE = tam giác EFC (g.c.g)   (đpcm)

c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)

=> AE = CE (2 cạnh tương ứng)   (đpcm)

21 tháng 3 2017

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

21 tháng 3 2017

không vẽ đc hình bạn ơi