Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC.
AB + BC + AC = 74 (*)
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB)
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được:
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm
Hình bạn tự vẽ nha.
a, \(\Delta ABC\) có: AM là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BM=MC\), \(AI=\frac{2}{3}AM\)
\(\Delta AMB\)có: MD là phân giác của \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{DB}=\frac{AM}{MB}\)(tính chất đường phân giác trong tam giác) (1)
\(\Delta AMC\)có: ME là phân giác của \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)(tính chất đường phân giác trong tam giác) (2)
Từ (1), (2) và \(BM=MC\left(cmt\right)\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)
\(\Delta ABC\)có: \(\frac{AD}{DB}=\frac{AE}{EC}\left(cmt\right)\Rightarrow DE//BC\)(định lý Ta-lét đảo)
b, \(\Delta ABM\)có: \(DI//BM\left(cmt\right)\Rightarrow\frac{DI}{BM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (3)
\(\Delta AMC\)có: \(IE//MC\left(cmt\right)\Rightarrow\frac{IE}{CM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (4)
Từ (3), (4) và \(BM=MC\left(cmt\right)\Rightarrow DI=IE\)
c, Ta có: \(\frac{IE}{CM}=\frac{AI}{AM}\left(cmt\right)\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}AM}{AM}\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}.10}{10}\)\(\Leftrightarrow\frac{IE}{15}=\frac{2}{3}\)\(\Leftrightarrow IE=10\left(cm\right)\)
a: AD/BD=AM/MB=6/5
b: AE/EC=AM/MC=6/5
=>AD/BD=AE/EC
=>DE//BC
c: Để DE là đường trung bình thì D là trung điểm của AB, E là trung điểm của AC
Xét ΔAMB có
MD vừa la trung tuyến, vừa là phân giác
=>ΔMAB cân tại M
=>MA=MB=MC=1/2BC
=>ΔABC vuông tại A
a: AD/BD=AM/MB=6/5
b: AE/EC=AM/MC=6/5
=>AD/BD=AE/EC
=>DE//BC
c: Để DE là đường trung bình thì D là trung điểm của AB, E là trung điểm của AC
Xét ΔAMB có
MD vừa la trung tuyến, vừa là phân giác
=>ΔMAB cân tại M
=>MA=MB=MC=1/2BC
=>ΔABC vuông tại A