Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB có MI là phân giác
nên AI/IB=AM/MB=AM/MC
Xét ΔAMC có MK là phân giác
nên AK/KC=AM/MC
=>AI/IB=AK/KC
=>IK//BC
b: Xét ΔABM có IO//BM
nên IO/BM=AO/AM
Xét ΔACM có OK//MC
nên OK/MC=AO/AM
=>IO/BM=OK/MC
mà BM=CM
nên IO=OK
a: Xét ΔMAB có MD là phân giác
nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)
Xét ΔAMC có ME là phân giác
nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)
M là trung điểm của BC
=>MB=MC(3)
Từ (1),(2),(3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
nên DE//BC
b: Xét ΔABM có DI//BM
nên \(\dfrac{DI}{BM}=\dfrac{AI}{AM}\left(4\right)\)
Xét ΔAMC có IE//MC
nên \(\dfrac{IE}{MC}=\dfrac{AI}{AM}\left(5\right)\)
Từ (4) và (5) suy ra \(\dfrac{DI}{BM}=\dfrac{IE}{MC}\)
mà MB=MC
nên DI=IE
c: M là trung điểm của BC
=>MB=MC=BC/2=30/2=15(cm)
\(\dfrac{AD}{DB}=\dfrac{AM}{MB}\)
=>\(\dfrac{AD}{DB}=\dfrac{10}{15}=\dfrac{2}{3}\)
=>\(\dfrac{AD}{AB}=\dfrac{2}{5}\)
Xét ΔABM có DI//BM
nên \(\dfrac{DI}{BM}=\dfrac{AD}{AB}\)
=>\(\dfrac{DI}{15}=\dfrac{2}{5}\)
=>DI=6(cm)
DI=IE
=>I là trung điểm của DE
=>\(DE=2\cdot DI=12\left(cm\right)\)
A B C M D E
a) Ta có MD là phân giác \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\left(1\right)\)
ME là phân giác \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{CE}=\frac{AM}{CM}\left(2\right)\)
Mà MB=MC (AM là trung tuyến)\(\Rightarrow\frac{AM}{BM}=\frac{AM}{MC}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\)=> DE//BC (định lý Talet đào) (đpcm)
Nguồn: Tuyết Nhi Melody
Khi BC cố định và AH không đổi thì DE không đổi. Mà MD vuông góc ME. Suy ra MI = DE/2 không đổi. Vậy I chạy trên đường tròn tâm M đường kính DE. Giới hạn tại đoạn BC