K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
6 tháng 9 2021
Lời giải:
$M,N$ lần lượt là trung điểm $AB, AC$ nên $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$
$\Rightarrow MN\parallel BC$ hay $MN\parallel HP$
$\Rightarrow MNPH$ là hình thang $(*)$
Mặt khác:
Tam giác vuông $ABH$ có $HM$ là đường trung tuyến ứng với cạnh huyền nên $HM=\frac{AB}{2}=MB$ (bổ đề quen thuộc)
$\Rightarrow $MHB$ cân tại $M$
$\Rightarrow \widehat{MHB}=\widehat{MBH}$
Mà $\widehat{MBH}=\widehat{NPC}$ (hai góc đồng vị với $NP\parallel AB$)
$\Rightarrow \widehat{MHB}=\widehat{NPC}$
$\Rightarrow 180^0-\widehat{MHB}=180^0-\widehat{NPC}$
Hay $\widehat{MHP}=\widehat{NPH}(**)$
Từ $(*); (**)\Rightarrow $MNPH$ là hình thang cân (đpcm)