K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

46;08.90

26 tháng 3 2018

a: M đối xứng E qua AB

=>AB là đường trung trực của ME

=>AB\(\perp\)ME tại I và I là trung điểm của ME

Ta có: M đối xứng F qua AC

=>AC là đường trung trực của MF

=>AC\(\perp\)MF tại K và K là trung điểm của MF

Xét tứ giác AIMK có

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

=>AIMK là hình chữ nhật

b: Ta có: AKMI là hình chữ nhật

=>AK//MI và AK=MI; KM//AI và KM=AI

Ta có: MI//AK

I\(\in\)ME

Do đó: IE//AK

Ta có: AK=IM

IM=IE

Do đó: AK=IE

Ta có: AI=MK

MK=KF

Do đó: AI=KF

Ta có: AI//MK

K\(\in\)MF

Do đó: AI//KF

Xét tứ giác AKIE có

AK//IE

AK=IE

Do đó: AKIE là hình bình hành

=>KI//AE và KI=AE

Xét tứ giác AIKF có

AI//KF

AI=KF

Do đó: AIKF là hình bình hành

=>KI//AF và KI=AF

Ta có: KI//AF

KI//AE

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

Ta có: KI=AE

KI=AF

Do đó: AE=AF

mà E,A,F thẳng hàng

nên A là trung điểm của EF

18 tháng 9 2021

\(a,\left\{{}\begin{matrix}BE=CF\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\Rightarrow\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\left(Ta-lét.đảo\right)\\ \Rightarrow AH\perp EF.tại.O\left(1\right)\)

Tam giác ABC cân tại A có AH là đường cao cũng là trung tuyến 

Áp dụng hệ quả Ta-lét: \(\left\{{}\begin{matrix}\dfrac{EO}{BH}=\dfrac{AO}{AH}\\\dfrac{AO}{AH}=\dfrac{OF}{HC}\end{matrix}\right.\Rightarrow\dfrac{EO}{BH}=\dfrac{OF}{HC}\)

Mà \(BH=HC\left(AH.trung.tuyến\right)\Rightarrow EO=OF\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\) E đối xứng F qua AH

\(b,\Delta BOC\) có \(OH\) vừa là đường cao vừa là trung tuyên nên là tam giác cân

\(\Rightarrow OB=OC;\widehat{OBC}=\widehat{OCB}\\ \Rightarrow\widehat{ABC}-\widehat{OBC}=\widehat{ACB}-\widehat{OCB}\left(\Delta ABC.cân.tại.A\right)\\ \Rightarrow\widehat{KBO}=\widehat{ICO}\)

\(\left\{{}\begin{matrix}OB=OC\left(cm.trên\right)\\\widehat{KBO}=\widehat{ICO}\left(cm.trên\right)\\\widehat{KOB}=\widehat{IOC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta BOK=\Delta COI\left(g.c.g\right)\\ \Rightarrow BK=CI\\ \Rightarrow BK-BE=CI-CF\left(BK=CF.do.giả.thiết\right)\\ \Rightarrow EK=FI\)

 

a: Xét ΔEBH và ΔFCH có 

EB=FC

\(\widehat{B}=\widehat{C}\)

BH=CH

Do đó: ΔEBH=ΔFCH

Suy ra: HE=HF

hay H nằm trên đường trung trực của EF(1)

Ta có: AE=AF

nên A nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra E và F đối xứng nhau qua AH

22 tháng 11 2019

k đúng cho tôi đi

22 tháng 11 2019

( Bạn tự vẽ hình nha )

a) Xét tứ giác AEDF có :

DE // AB

DF // AC

=> AEDF là hình bình hành ( dấu hiệu nhận biết )

Xét hình bình hành AEDF có : 

AD là phân giác của góc BAC

=> EFGD là hình thoi ( dấu hiệu nhận biết )

b) XÉt tứ giác EFGD có :

FG // ED ( AF //ED )

FG = ED ( AF = ED )

=> EFGD là hình bình hành ( dấu hiệu nhận biết )

c) Nối G với I 

+) XÉt tứ giác AIGD có :

F là trung điểm của AG

F là trung điểm của ID

=> AIGD là hình bình hành ( dấu hiệu nhận biết ) 

=> GD // IA hay GD // AK ( tính chất  )

+) Xét tứ giác AKDG có :

GD // AK 

AG // Dk ( AF // ED ) 

=> AKDG là hình bình hành ( dấu hiệu )

+) xtes hinhnf bình hành AKDG có :

AD và GK là 2 đường chéo 

=> AD và GK cắt nhau tại trung điểm mỗi đường 

Mà O là trung điểm của AD ( vì AFDE là hình thoi )

=> O là trung điểm của GK

=> ĐPCM