Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
b: Xét ΔABD có
MK//BD
nên \(\dfrac{MK}{BD}=\dfrac{AM}{AB}=\dfrac{5}{6}\left(1\right)\)
Xét ΔACD có
KN//DC
nên \(\dfrac{KN}{DC}=\dfrac{AN}{AC}=\dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{KM}{BD}=\dfrac{KN}{DC}\)
mà BD=DC
nên KM=KN
hay K là trung điểm của MN
A B C M N I K
a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)
=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)
=> \(CN=AC-AN=8-3=5\)
b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)
NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)
=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)
=> MK = KN => K là trung điểm của MN
c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)
=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)
Ta có: BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)
=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)
Hình bạn tự vẽ nhá
a) Ta có: MB = AB - AM = 6 - 2,25 = 3,75 (cm)
Gọi x là AN
NC là: 8 - x
Vì MN // BC, theo định lý Ta-lét ta có:
AMMB=ANNC⇔2,253,75=x8−x
⇔2,25(8−x)3,75(8−x)=3,75x3,75(8−x)
⇔2,25(8−x)=3,75x
⇔18−2,25x=3,75x
⇔−2,25x−3,75x=−18
⇔−6x=−18
⇔x=−18−6
⇔x=3
Nên NC = 8 - x = 8 - 3 = 5 (cm)
Vậy AN = 3cm, NC = 5cm
b) Ta có: MN // BC (gt) (1)
⇒ MK // BI, theo hệ quả của định lý Ta-lét ta có:
AKAI=MKBI (2)
Từ (1) ⇒ KN // IC, theo hệ quả của định lý Ta-lét ta có:
AKAI=KNIC (3)
Từ (2), (3) ⇒MKBI=KNIC(4)
Mà BI = IC (gt) (5)
Từ (4), (5) ⇒MK=KN
Nên K là trung điểm của MN
Câu 3: 3.5đ. Cho tam giác ABC có AB = 6cm, AC = 8 cm. TRên cạnh AB lấy điểm M sao cho AM = 2,25 cm. Qua M kẻ đường thẳng song song với BC cắt cạnh AC tại N
a) Tính độ dài các đoạn thẳng AN, CN.
b) Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh K là trung điểm của MN
. c) Nếu BN là tia phân gíac của góc ABC thì diện tích tam giác ABC là bao nhiêu?
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
a) ta có AM/AB =AN/AC =3/5 .Suy ra theo talet ta có MN//BC
b) ta có MK // BI nên tam giác AMK đồng dạng tam giác ABI . Suy ra AM /AB =MK /BI => MK = BI . AM/AB
Tương tự tam giác AKN đd tam giác AIC nên suy ra AN/AC =KN /IC . Suy ra NK = IC .AN /AC
mÀ IB = IC & AM/AB =AN/AC nên suy ra MK =NK (ĐPCM )
Bạn kẻ hình giúp mình
a) ta có:
AMMB=32,ANNC=7,55=32⇒AMMB=ANNC(=32)AMMB=32,ANNC=7,55=32⇒AMMB=ANNC(=32)
⇒⇒ MN//BC( định lí talet đảo)
b) ta có K∈MN,I∈BC⇒NKK∈MN,I∈BC⇒NK//CI, KM//BI
⇒NKCI=AKAI,KMIB=AKAI⇒NKCI=KMIB(=AKAI)màCI=IB⇒NK=KM⇒NKCI=AKAI,KMIB=AKAI⇒NKCI=KMIB(=AKAI)màCI=IB⇒NK=KM
Vậy K là trung điểm NM
A B C M N K I
CM: a) Ta có: \(\frac{AM}{MB}=\frac{6}{4}=\frac{3}{2}\) ; \(\frac{AN}{NC}=\frac{15}{10}=\frac{3}{2}\)
=> \(\frac{AM}{MB}=\frac{AN}{NC}=\frac{3}{2}\)
=> MN // BC (theo định lí Ta - lét đảo)
b) Do MI // BK, theo định lí Ta - lét, ta có: \(\frac{MI}{BK}=\frac{AI}{AK}\)
Do IN // KC, theo định lí Ta - lét, ta có: \(\frac{IN}{KC}=\frac{AI}{AK}\)
=> \(\frac{MI}{BK}=\frac{NI}{KC}\)
mà BK = KC => MI = NI => I là trung điểm của MN