\(\dfrac{1}{4}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Tính diện tích tam giác DEF ạ

23 tháng 4 2020

120 nhe

13 tháng 5 2019

Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé

Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)

Qua E kẻ đường thẳng song song BF cắt AC tại K

Theo ta-lét ta có:

\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)

Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I

Theo talet ta có

\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)

=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)

=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)

Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)

=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)

Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)

7 tháng 7 2018

Tự vẽ hình nhé Nữ hoàng sến súa là ta

Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK

Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC

Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC

Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:

+ Chung CE

\(\widehat{KEC}=\widehat{FCE}\)( so le trong )

\(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))

\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)

Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)

Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)


 

7 tháng 7 2018

Hình nè, nếu bạn không vẽ được:

Hình xấu thông cảm