Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)
a) Xét ΔADB vuông tại A và ΔEDB vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔADB=ΔEDB(cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
b) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
a: Xét ΔADB và ΔADC có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔADB=ΔADC
Ta có tam giác ABC và tia phân giác AD cắt BC tại D, BD=2DC. Kẻ DE vuông góc AB và DF vuông góc AC.
Gọi E là hình chiếu vuông góc của D lên AB, F là hình chiếu vuông góc của D lên AC.
Ta có:
Từ BD=2DC, ta có DC=1/3BC và BD=2/3BC.
Gọi x là độ dài BC, ta có DC=1/3x và BD=2/3x.
Áp dụng vào AE/AB = DE/DC = AD/AC, ta có AE/AB = DE/(1/3x) = AD/AC. Tương tự, áp dụng vào AF/AC = DF/DB = AD/AB, ta có AF/AC = DF/(2/3x) = AD/AB.
Từ hai phương trình trên, ta có hệ phương trình: AE/AB = DE/(1/3x) = AD/AC AF/AC = DF/(2/3x) = AD/AB
Giải hệ phương trình trên ta sẽ tìm được các độ dài của các đoạn thẳng AE, DE, AF, DF.