K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

Bài 14.

Áp dụng định lí hàm số Cô sin, ta có:

\(\dfrac{{{\mathop{\rm tanA}\nolimits} }}{{\tan B}} = \dfrac{{\sin A.\cos B}}{{\cos A.\sin B}} = \dfrac{{\dfrac{a}{{2R}}.\dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}}}}{{\dfrac{b}{{2R}}.\dfrac{{{c^2} + {b^2} - {a^2}}}{{2bc}}}} = \dfrac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}} \)

20 tháng 1 2020

Bài 19.

Áp dụng định lí sin và định lí Cô sin, ta có:

\( \cot A + \cot B + \cot C\\ = \dfrac{{R\left( {{b^2} + {c^2} - {a^2}} \right)}}{{abc}} + \dfrac{{R\left( {{c^2} + {a^2} - {b^2}} \right)}}{{abc}} + \dfrac{{R\left( {{a^2} + {b^2} - {c^2}} \right)}}{{abc}} = \dfrac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}\left( {dpcm} \right) \)

NV
26 tháng 9 2019

Sơ lược cách giải thôi nhé, bạn tự thay vào tính, mấy bài toàn căn với số thế này làm biếng tính toán hết ra lắm:

D là trọng tâm tam giác, gọi M là trung điểm AC; N là trung điểm AB

Theo tính chất trọng tâm: \(BD=\frac{2}{3}m_b=4\) ; \(CD=\frac{2}{3}m_c=6\)

\(DN=m_c-CD=3\) ; \(DM=m_b-BD=2\)

\(cos\widehat{BDC}=cos120^0=\frac{CD^2+BD^2-BC^2}{2BD.CD}\Rightarrow a=BC=...\)

\(cos\widehat{CDM}=cos60^0=\frac{DM^2+CD^2-CM^2}{2DM.CD}\Rightarrow CM=...\Rightarrow b=2CM=...\)

\(cos\widehat{BDN}=cos60^0=\frac{DN^2+BD^2-BN^2}{2DN.BD}\Rightarrow BN=...\Rightarrow c=2BN=...\)

31 tháng 3 2020

Ta có :

\(m_a=\sqrt{\frac{b^2+c^2}{2}-\frac{a^2}{4}}=\frac{\sqrt{2b^2+2c^2-a^2}}{2}=\frac{\sqrt{2b^2+2c^2-\left(2c^2-b^2\right)}}{2}=\frac{\sqrt{3}b}{2}\)

\(m_b=\sqrt{\frac{c^2+a^2}{2}-\frac{b^2}{4}}=\frac{\sqrt{2c^2+2a^2-b^2}}{2}=\frac{\sqrt{2c^2+2a^2-\left(2c^2-a^2\right)}}{2}=\frac{\sqrt{3}a}{2}\)

\(m_c=\sqrt{\frac{a^2+b^2}{2}-\frac{c^2}{4}}=\frac{\sqrt{2a^2+2b^2-c^2}}{2}=\frac{\sqrt{4c^2-c^2}}{2}=\frac{\sqrt{3}c}{2}\)

\(\Rightarrow m_a+m_b+m_c=\frac{\sqrt{3}}{2}\left(a+b+c\right)\)

Hình như đề nhầm dấu thì phải

31 tháng 3 2020

mk thấy trong đề nó viết là trừ