Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Theo câu a ta có: \(BE.CF=HE.HF\)
Mà \(HE^2=EB.EA;HF^2=FA.FC\)
=> \(HE^2.HF^2=EB.FC.EA.FA=HE.HF.EA.FA\)
=> \(EA.FA=HE.HF=\frac{AH^3}{BC}=\frac{x^3}{2a}\)
=> \(S_{AEF}=\frac{1}{2}.EA.FA=\frac{x^3}{4a}\)
c) Để Diện tích tam giác AEF đạt giá trị lớn nhất khi và chỉ khi x đạt giá trị lớn nhất
Ta có: \(x^2=AH^2=BH.CH\le\frac{\left(BH+CH\right)^2}{4}=\frac{BC^2}{4}=\frac{4a^2}{4}=a^2\)
=> \(x\le a\)
"=" xảy ra khi và chỉ khi BH=CH=a
Vậy \(maxS_{ABC}=\frac{a^3}{4a}=\frac{a^2}{4}\) tại x=a
a,BC^2 = AB^2 + AC^2.
AB^2= AH^2 + HB^2= AH^2 + HE^2 + BE^2
AC^2= AH^2 + CH^2 = AH^2 + CF^2 + FH^2
Cộng AB^2 và AC^2 rồi ghép HE^2 + FH^2 = AH^2.
ta de co tu giac AEHF la hinh chu nhat
=>AH=EF
ma EF^2=HE^2+HF^2(chu vi tam giac HEFvuông)
=>AH^2=HE^2+HF^2
ap dung dinh ly pytago cho cac tam giac ABC AHC AHB ta co
AB^2=AH^2+BH^2
AC^2=AH^2+HC^2
=>AB^2+AB^2=BH^2+CH^2+2AH^2
ma BH^2=BE^2+HE^2 ; CF^2+HF^2=CH^2;AB^2+AC^2=BC^2
=>BC^2=BE^2+CF^2+2AH^2+HE^2+HF^2=3AH^2+CF^2+BE^2
Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)