K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABH}=\widehat{ADC}\)(1)

Xét (O) có 

ΔADC nội tiếp đường tròn(A,D,C∈(O))

AD là đường kính(gt)

Do đó: ΔADC vuông tại C(Định lí)

Suy ra: \(\widehat{DAC}+\widehat{ADC}=90^0\)(Hai góc nhọn phụ nhau)(2)

Ta có: ΔABH vuông tại H(AH⊥BC)

nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(Hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{BAH}=\widehat{DAC}\)(đpcm)

18 tháng 1 2021

Vẽ đường kính AK

+) Dễ có: ^KBC = ^KAC (2 góc nội tiếp cùng chắn cung KC) (1)

+) ^ABK là góc nội tiếp chắn nửa đường tròn nên ^ABK = 900

 Có: ^KBC + ^CBA = ^ABK = 900 (cmt)

       ^BAH + ^CBA = 900 (∆ABH vuông tại H)

Từ đó suy ra ^KBC = ^BAH                                                    (2)

Từ (1) và (2) suy ra ^BAH = ^KAC hay ^BAH = ^OAC (đpcm)

18 tháng 1 2021

Kẻ đường kính AE của đường tròn ( O) . Ta thấy \(\widehat{ACE}=90^o\)( góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\widehat{OAC}+\widehat{AEC}=90^o\) (1)

Theo gt, ta có: \(\widehat{BAH}+\widehat{ABC}=90^O\) (2)

Lại có: \(\widehat{AEC}=\widehat{ABC}\) (3)

Từ (1), (2), (3) => đpcm

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc EAH+góc ACB=90 độ

góc EBC+góc ACB=90 độ

=>góc EAH=góc EBC

b: AK cắt EF tại M

AK cắt BC tại N

AH cắt (O) tại K

=>HM//AB và QN//AB

=>HM//QN

1: ΔABC cân tại A 

=>AB=AC

mà OB=OC

nên AO là trung trực của BC

=>AD là đường kính của (O)

2: Xét (O) có

góc ACD là góc nội tiếp chắn nửa đường tròn

=>góc ACD=90 độ

3: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=BC/2=12cm

AH=căn AB^2-AH^2=16cm

ΔACD vuông tại C có CH là đường cao

nên AC^2=AH*AD

=>AD=20^2/16=25cm

=>R=12,5cm

22 tháng 5 2019

a) Ta có: AM là phân giác \(\widehat{BAC}\)=> \(\widehat{BAM}\)\(\widehat{CAM}\)=> \(\widebat{BM}\)=\(\widebat{CM}\)

=> BM = CM

mà OB=OC (bán kính (O))

=> OM là đường trung trực của BC => OM đi qua tđ N của BC

b) Từ A vẽ đường kính AQ => tam giác ACQ vuông tại C => \(\widehat{CAO}\)\(\widehat{AMC}\)=90 (1)

AK là đg cao => tam giác AKB vuông tại K => \(\widehat{BAK}\)\(\widehat{ABK}\)=90 (2)

mà \(\widehat{AMC}\)\(\widehat{ABK}\)(cùng chắn \(\widebat{AC}\)) (3)

Từ (1),(2),(3) => \(\widehat{CAO}\)\(\widehat{BAK}\)

mà \(\widehat{BAM}\)\(\widehat{MAC}\)(cmt)

      \(\widehat{BAM}\)\(\widehat{BAK}\)\(\widehat{KAM}\)

     \(\widehat{MAC}\)\(\widehat{CAO}\)+\(\widehat{MAO}\)

=> \(\widehat{KAM}\)\(\widehat{MAO}\)

                                                                                   

17 tháng 4 2017

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

20 tháng 4 2017

a, ta có ^BAC=900(góc nội tiếp chắn nửa đường tròn đường kính BC)

^MDC=900(góc nội tiếp chắn nửa đường tròn đường kính MC)

=>^BAC=^MDC(=900)

=>tứ giác ABCD nội tiếp (hai đỉnh A và D kề nhau cùng nhìn cạnh BC dưới hai góc bằng nhau)

b. vì tứ giác ABCD nội tiếp (câu a) nên ^ABD=^ACD (hai góc nội tiếp cùng chắn cung AD)

c, ta có bốn điểm D,S,C,M cùng thuộc đường tròn đường kính MC

=>tứ giác DSCM nội tiếp

=>^ADM=^SCM (cùng bù với ^MDS)

Mà ADCB nội tiếp nên ^ADM=^MCB( hai góc nội tiếp cùng chắn cung AB)

Do đó ^SCM=^MCB

=>CA là tia phân giác ^SCB

29 tháng 1 2019

Mình sẽ làm từ câu C nha vì câu C có liên quan đến câu cuối 

c/ Xét tam giác ABF và tam giác AEC ta có :

Góc BAF = góc CAE ( AF là phân giác)

góc ABF = góc AEC ( 2 góc nt chắn cung AC)

=>tam giác ABF đồng dạng tam giác AEC (g-g)

=>\(\frac{AB}{AE}=\frac{AF}{AC}\)=>AB.AC=AE.AF

d/ Xét tam giác ABF và tam giác CFE ta có:

góc ABF = góc FEC ( 2 góc nt chắn cung AC )

góc BAF = góc FCE (2 góc nt chắn cung EB )

=> tam giác ABF đồng dạng tam giác CEF (g-g)

=>\(\frac{FB}{FE}=\frac{FA}{FC}\)=>FB.FC=FA.FE

Ta có AF.AE=AB.AC (cmt)

          AF.FE=BF.CF (cmt)

=> AF.AE-AF.FE = AB.AC - BF.CF

=> AF(AE-FE) = AB.AC - BF.CF

=> \(AF^2=AB.AC-BF.CF\)

3 tháng 4 2020

a) Xét (O) có AE là tia phân giác của góc BAC
=> ^BAE=^CAE
=> sđBE=sđCE
=> BE=CE (liên hệ giữa cung và dây cung)
=> tam giác BEC cân tại E (đpcm)

b) Tứ giác ABEC nội tiếp (O)
=> ^BAC+^BEC=180 độ (2 góc đối nhau)
<=> ^BEC=180 độ - ^BAC
Tam giác ABC có ^BAC+^ABC+^BCA=180 độ
=> =180 độ - ^BAC=^ABC+^BCA
Suy ra Góc BEC = góc ABC + góc ACB (đpcm)

c) AE là tia phân giác của góc BAC
=> ^BAE=^CAE
Hay ^BAF=^CAE
Tứ giác ABEC nội tiếp (O)
=> ^ABC=^AEC (2 góc nt chắn cung AC)
Hay ^ABF=^AEC
Xét tam giác ABF và tam giác AEC có:
^ABF=^AEC
^BAF=^CAE
=> tam giác ABF ~ tam giác AEC (g-g)
=> AB/AF=AE/AC
<=> AB.AC=AE.AF (đpcm)