Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ sau:
K B A C 1 2 O
a) Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)
Xét ΔABO và ΔACO có:
AO: cạnh cung
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
OB = OC (gt)
=> ΔABO = ΔACO (đpcm)
b) Vì AK // BC(gt) => \(\widehat{KAB}=\widehat{ABO}\) (so le trong)
Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{KAB}=\widehat{ACB}\) (*)
Vì ΔABO = ΔACO (ý a) => \(\widehat{A_1}=\widehat{A_2}\)
mà \(\widehat{A_1}=\widehat{ABK}\) (so le trong do AK // BC)
=> \(\widehat{A_2}=\widehat{ABK}\) (**)
Xét ΔABK và ΔACO có:
\(\widehat{KAB}=\widehat{ACB}\) (*)
AB = AC (gt)
\(\widehat{A_2}=\widehat{ABK}\) (**)
=> ΔABK = ΔACO (g.c.g)
=> AK = OC (đpcm)
Tứ giác ADMB có: AB//MD, AD//MB
ADMB là hình bình hành AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)
Hình tự vẽ nhá :)
a) Có AD // BM (gt), DM // AB (gt) => DA = BM ; DM = AB ( t/c đoạn chắn ) (1)
AE // CM (gt); AC // EM (gt) => AE = CM ; AC = EM ( t/c đoạn chắn ) (2)
Từ (1) và (2) => AD + AE = BM + CM
=> DE = BC
Xét tam giác ABC và tam giác MDE có :
AB = DM ( cmt )
BC = DE ( cmt )
AC = EM ( cmt )
=> \(\Delta ABC=\Delta MDE\) ( c.c.c )
trả lời giúp đi đang cần gấp
Ta biết: b//ACb//AC
⇒B1ˆ=Cˆ⇒B1^=C^ ( Sole trong ) (1)
Có: Oa//BCOa//BC
a∩b={O}a∩b={O}
⇒Oˆ=B1ˆ⇒O^=B1^ ( Đồng vị ) (2)
Từ (1) và (2)
⇒Oˆ=Cˆ