Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)và\(\Delta ADC\)có
AC là cạnh chung
\(\widehat{DAC}=\widehat{BCA}\)(so le trong )
\(\widehat{BAC}=\widehat{DCA}\)(so le trong )
Do đó \(\Delta ABC\) = \(\Delta ADC\)(g.c.g)
a: Xét ΔABC và ΔCDA có
\(\widehat{BAC}=\widehat{DCA}\)
AC chung
\(\widehat{ACB}=\widehat{CAD}\)
Do đó: ΔABC=ΔCDA
b: Xét ΔADB và ΔCBD có
BD chung
AD=CB
AB=CD
Do đó: ΔADB=ΔCBD
6:
a: Xét ΔABC và ΔCDA có
góc BAC=góc DCA
AC chung
góc BCA=góc DAC
=>ΔABC=ΔCDA
b: Xét ΔADB và ΔCBD có
AD=CB
AB=CD
DB chung
=>ΔADB=ΔCBD
c: Xét tứ giác ABCD có
AB//CD
AD//BC
=>ABCD là hình bình hành
=>O là trung điểm chung của AC và DB
Xét ΔOAB và ΔOCD có
OA=OC
góc AOB=góc COD
OB=OD
=>ΔOAB=ΔOCD
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
Cứng đờ tay luôn rồi, khổ quá:((
a) Xét \(\Delta DBF\) và \(\Delta FED:\)
DF:cạnh chung
\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)
\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)
=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)
Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)
Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)
=>\(\widehat{DAE}=\widehat{FEC}\)
Xét \(\Delta DAE\) và \(\Delta FEC:\)
DA=FE(=BD)
\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)
\(\widehat{DAE}=\widehat{FEC}\) (cmt)
=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm
a. Nối DD và FF
Xét ΔBDFΔBDF và ΔDEFΔDEF , ta có :
DF=DFDF=DF ( cạnh chung )
ˆBDF=ˆDEFBDF^=DEF^ ( vì AB//EFAB//EF )
ˆDFB=ˆFDEDFB^=FDE^ ( vì DE//BCDE//BC )
⇒ΔBDF=ΔFDE(g.c.g)⇒ΔBDF=ΔFDE(g.c.g)
⇒DB=EF⇒DB=EF ( hai cạnh tương ứng )
Mà AD=DB⇒AD=EFAD=DB⇒AD=EF
b. Xét ΔADEΔADE và ΔEFCΔEFC , ta có :
ˆA=ˆFECA^=FEC^ ( vì AB//EFAB//EF )
AD=EFAD=EF ( theo câu a )
ˆADE=ˆEFC(=ˆB)ADE^=EFC^(=B^)
⇒ΔADE=ΔEFC(g.c.g)
a: Xét ΔABC và ΔCDA có
\(\widehat{BAC}=\widehat{DCA}\)
AC chung
\(\widehat{ACB}=\widehat{CAD}\)
Do đó: ΔABC=ΔCDA
Suy ra: AB=CD; BC=DA
b: Xét ΔADB và ΔCBD có
AD=CB
DB chung
AB=CD
Do đó: ΔADB=ΔCBD
c: Xét tứ giác ABCD có
AD//BC
AB//CD
Do đó: ABCD là hình bình hành
Suy ra: Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
=>O là trung điểm chung của CA và BD
Xét ΔABO và ΔCDO cps
OA=OC
OB=OD
AB=CD
Do đó:ΔABO=ΔCDO
A B C D O
a) Xét \(\Delta ABC;\Delta ADC\) có :
\(\widehat{ACB}=\widehat{CAD}\) (so le trong)
\(AC:chung\)
\(\widehat{BAC}=\widehat{DCA}\) (so le trong)
=> \(\Delta ABC=\Delta ADC\left(g.c.g\right)\)
b) Xét \(\Delta ADB;\Delta CBD\) có :
\(AB=CD\left(\Delta ABC=\Delta ADC-cmt\right)\)
\(BD:Chung\)
\(AD=BC\) (\(\Delta ABC=\Delta ADC\left(cmt\right)\))
=> \(\Delta ADB=\Delta CBD\left(c.c.c\right)\)
c) Xét \(\Delta ABO;\Delta COD\) có :
\(\widehat{OAB}=\widehat{OCD}\left(slt\right)\)
\(AB=DC\left(cmt\right)\)
\(\widehat{OBA}=\widehat{ODC}\left(slt\right)\)
=> \(\Delta ABO=\Delta COD\left(g.c.g\right)\)