Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H K
\(a)CM:\Delta BHD\sim\Delta CKD\)
Xét \(\Delta BHD\) và \(\Delta CKD\) có:
\(\widehat{BHD}=\widehat{CKD}=90^0\)
\(\widehat{HDB}=\widehat{KDC}\) ( đối đỉnh)
Do đó: \(\Delta BHD\sim\Delta CKD\)
b) Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(\widehat{BAH}=\widehat{CAK}\left(gt\right)\)
\(\widehat{BHA}=\widehat{CKA}\left(=90^0\right)\)
Do đó: \(\Delta ABH\sim\Delta ACK\left(g-g\right)\)
a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)
\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)
Xét \(\Delta BHD\)và \(\Delta CKD\) có:
\(\widehat{BHD}=\widehat{CKD}=90^0\)
\(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)
Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)
b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)
\(\widehat{AHB}=\widehat{AKC}=90^0\)
Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)
Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay \(AB.AK=AC.AH\)
C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\)
\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)
Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)
d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.
Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I
\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)
\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)
Suy ra: \(\widehat{F}=\widehat{IEC}\)
Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)
Nên \(\widehat{FBO}=\widehat{ICE}\)
Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)
Chúc bạn học tốt.
a, Xét tam giác ABH và tam giác ACK ta có
^AHB = ^AKC = 900
^BAH = ^CAK ( AD là pg )
Vậy tam giác ABH ~ tam giác ACK ( g.g )
Xét tam giác BDH và tam giác CDK ta có
^BDH = ^CDK ( đối đỉnh )
^BHD = ^CKD = 900
Vậy tam giác BDH ~ tam giác CDK (g.g)
b, Ta có \(\frac{AH}{AK}=\frac{BH}{CK}\)( tỉ số đồng dạng )
\(\frac{DH}{DK}=\frac{BH}{CK}\)( tỉ số đồng dạng )
\(\Rightarrow\frac{AH}{AK}=\frac{DH}{DK}\Rightarrow AH.DK=DH.AK\)
c, câu cuối dễ rồi, bạn tự làm nhé
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc ABH=góc CAH
=>ΔABH đồng dạng với ΔCAH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
a, xét tam giác BHD và tam giác CKD có :
góc BHD = góc CKD = 90 do ...
góc HDB = góc CDK (đối đỉnh)
=> tam giác BHD ~ tam giác CKD (g - g)
b, xét tam giác ABH và tam giác ACK có :
góc AHB = góc AKC = 90 do ...
góc BAH = góc CAH do AD là phân giác của góc BAC (gt)
=> tam giác ABH ~ tam giác ẠCK (g.g)