K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC

=> OA=OB=OC và O là trung điểm của BC

=> Tam giác ABC vuông tại A

=> góc BAC = 90 độ

b) DO tam giác HAK nội tiếp đường tròn (I) 

Lại có góc HAK = 90 độ

=> HK là đường kính của (I)

=> HK đi qua I

=> H,I,K thẳng hàng

c) Đề bài ghi ko rõ

d) 3 điểm nào?

3 tháng 2 2019

A B C O H K I D E G 1 1 1

a, Xét \(\Delta BAC\)có OA = OB = OC ( = R )

=> \(\Delta BAC\)vuông tại A

\(\Rightarrow\widehat{BAC}=90^o\)

b, Xét \(\Delta AHO\) có IA = IH = IO (Bán kính (I))

=> \(\Delta AHO\)vuông tại H

=> \(\widehat{AHO}=90^o\)

Tương tự \(\widehat{AKO}=90^o\)

Tứ giác AHOK có 3 góc vuông nên là hcn

=> Trung điểm I của OA cũng là trung điểm của HK

Vì OA = OB ( = R )

=> \(\Delta AOB\)cân tại O

\(\Rightarrow\widehat{A_1}=\widehat{B_1}\)

Xét \(\Delta AHK\)vuông tại A có I là trung điểm HK

=> IA = IH

\(\Rightarrow\Delta AIH\)cân tại I

\(\Rightarrow\widehat{A_1}=\widehat{H_1}\)

Do đó \(\widehat{H_1}=\widehat{B_1}\)

=> HI // BC (so le trong)

Tương tự IK // BC

Do đó H , I , K thẳng hàng (tiên đề Ơ-clit)

c, Xét \(\Delta AOB\)cân tại O có OH là đường cao

=> OH là đường trung trực của AB

Mà điểm D thuộc OH

=> DA = DB

Tương tự EA = EC 

Khi đó BD + CE = DA + EA = DE (DDpcm0+)

d,Gọi G là trung điểm DE 

Mà tam giác DOE vuông tại D nên G là tâm (DOE)

Dễ thấy BD , CE là tiếp tuyến (O)

Nên BD , CE cùng vuông với BC

=> BD // CE

=> BDEC là hình thang

Mà GO là đường trung bình (dễ)

=> GO // BD

=> GO vuông với BC

Mà O thuộc BC

=> (DOE) tiếp xúc BC

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
22 tháng 5 2016

a) tự lm

b) ta có  BAO +BKO=90+90=180

=>...............

c)

22 tháng 5 2016

c) vì OK vg vs BC=>..............................................

d)

26 tháng 4 2017

Em xem lại đề bài này nhé.

d. Do S, H cùng thuộc AH nên nếu S, H ,E thẳng hàng thì E phải thuộc AH. Cô có hình vẽ phản chứng:

Đường tròn c: Đường tròn qua C với tâm O Đường tròn d: Đường tròn qua N, O, C Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, N] Đoạn thẳng j: Đoạn thẳng [C, M] Đoạn thẳng k: Đoạn thẳng [A, E] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [O, E] Đoạn thẳng p: Đoạn thẳng [M, N] Đoạn thẳng q: Đoạn thẳng [A, D] B = (-0.48, 1.12) B = (-0.48, 1.12) B = (-0.48, 1.12) A = (1.14, 6.58) A = (1.14, 6.58) A = (1.14, 6.58) C = (7.38, 1.12) C = (7.38, 1.12) C = (7.38, 1.12) Điểm O: Trung điểm của g Điểm O: Trung điểm của g Điểm O: Trung điểm của g Điểm M: Giao điểm của c, f Điểm M: Giao điểm của c, f Điểm M: Giao điểm của c, f Điểm N: Giao điểm của c, h Điểm N: Giao điểm của c, h Điểm N: Giao điểm của c, h Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm E: Giao điểm của d, e Điểm E: Giao điểm của d, e Điểm E: Giao điểm của d, e Điểm D: Giao điểm của n, g Điểm D: Giao điểm của n, g Điểm D: Giao điểm của n, g Điểm S: Giao điểm của n, p Điểm S: Giao điểm của n, p Điểm S: Giao điểm của n, p