Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ đề: Cho đường tròn (O) với 2 dây AX,AY. Gọi Z,T lần lượt là hình chiếu của O trên AX,AY. Biết \(\frac{OZ}{AX}=\frac{OT}{AY}\). Khi đó AX = AY.
A X Y O Z T A B C H O M C'
Chứng minh bổ đề (Quan sát hình bên trái): Thấy ngay Z và T lần lượt là trung điểm của AX,AY
Kết hợp \(\frac{OZ}{AX}=\frac{OT}{AY}\)suy ra \(\frac{OZ}{AZ}=\frac{OT}{AT}\). Mà ^OZA = ^OTA (=900) nên \(\Delta\)OAZ ~ \(\Delta\)OAT (c.g.c)
=> ^OAZ = ^OAT => 2 tam giác cân tại O: \(\Delta\)AOX và \(\Delta\)AOY bằng nhau => AX = AY.
Giải bài toán: Vẽ (O) ngoại tiếp \(\Delta\)ABC. Gọi M,N,P thứ tự là hình chiếu của O lên BC,CA,AB
Kẻ đường kính CC'. Khi đó AC' // BH (Cùng vuông góc AC), BC' // AH
Do vậy tứ giác AC'BH là hình bình hành => AH = BC' = 2OM (Vì OM là đường trung bình \(\Delta\)CBC')
Tương tự BH = 2ON, CH = 2OP. Từ đó kết hợp với giả thiết \(\frac{AH}{BC}=\frac{BH}{CA}=\frac{CH}{AB}\)
Suy ra \(\frac{OM}{BC}=\frac{ON}{CA}=\frac{OP}{AB}\). Áp dụng Bổ đề ta thu được AB=BC=CA
Vậy nên tam giác ABC là tam giác đều (đpcm).
vừa nghĩ được một cách dễ hơn dùng tam giác đồng dạng, ta chứng minh được \(BC.AH=CA.BH=AB.CH\)
\(\frac{AH}{BC}=\frac{BH}{CA}=\frac{CH}{AB}\)\(\Leftrightarrow\)\(\frac{BC.AH}{BC^2}=\frac{CA.BH}{CA^2}=\frac{AB.CH}{AB^2}\)
\(\Leftrightarrow\)\(\frac{1}{BC^2}=\frac{1}{CA^2}=\frac{1}{AB^2}\)
\(\Leftrightarrow\)\(AB=BC=CA\)
H A B C
a)Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI ﴾1﴿
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
NHỚ TK MK NHA
mk chưa hok lớp 9
v bạn khỏi cmt vô thôi chời :)