K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD vuông góc AB

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC vuông góc CD

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔHDA có

I,O lần lượt là trung điểm của DH,DA

=>IO là đường trung bình

=>IO//AH và IO=AH/2

=>AH=2IO

5 tháng 9 2023

Vẽ hình giúp em với ạ, em cảm ơn nhiều

 

 

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.a. tứ giác ACOD là hình jb. tam giác BCD là tam giác jc. tính chu vi và diện tích tam giác BCD3. tam giác ABC nhọn nội tiếp...
Đọc tiếp

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với

0
1 tháng 3 2016

a)Gọi I là trung điểm của tam giác BC

Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC

=>IE=ID=IB=IC

=> tứ giác BCDE nội tiếp.  tâm đường tròn là I

b)AFK=90 ( dg cao thứ 3)

ACK=90 (chắn nữa dg tròn)

=>AFB=ACK

c)BD vg góc với AC

ACK=90 =>CK vg góc với AC

=>CK song song với BH

tuong tu CH song song voi BK

=>BHCK là hinh binh hanh

*vì I là trung điểm của BC 

=>I cung la trung diem cua HK

=>H,I,K thang hang

giúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.a. tứ giác ACOD là hình jb. tam giác BCD là tam giác jc. tính chu vi và diện tích tam giác BCD3. tam giác ABC nhọn nội...
Đọc tiếp

giúp với

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABC

0
22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm

26 tháng 4 2023

giải thích rõ hơn câu c dùm mk dc không ạ