K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

sai đề, góc CAH ko thể = góc BAE đk

13 tháng 1 2020

Trả lời

a) Ta có:

AB = AE + EB

AC = AD + DC

Mà AB = AC (gt)

=> EB = DC

Xét ΔBDCΔBDC và ΔCEBΔCEB có:

EB = DC (cmt)

góc BDC = góc CEB = 900

BC là cạnh chung

Vậy: ΔBDCΔBDC = ΔCEBΔCEB (cạnh huyền - cạnh góc vuông)

b) Ta có: BC = BH + HC

=> BH = HC = BC2BC2 = 8282= 4 (cm)

Áp dụng định lí Py - ta - go vào ΔAHCΔAHC vuông tại H có:

AC2 = AH2 + HC2

AC2 = 32 + 42

AC2 = 9 + 16

AC2 = 25

AC = 25−−√25= 5 (cm)

17 tháng 3 2020

a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)

Có: AB=AC(gt)

Góc ABH = góc ACH(gt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=>HB=HC (2 cạnh tương ứng)

=>Góc CAH = góc BAH( 2 góc tương ứng)

b/ Ta có :HB=HC( cmt)

=> H trung điểm BC

Ta có: HB=HC=BC/2=8/2=4 (cm)

Xét tam giác ABH vuông tại H

Có AB^2= AH^2+HB^2 (pytago)

=>AH^2= AB^2-HB^2

AH^2= 5^2-4^2

AH^2=25-16

AH^2=9

AH= căng 9

=> AH= 3cm

Vậy AH=3cm

c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)

Có: AH chung

Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)

=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)

=> AD=AE ( 2 cạnh tương ứng)

=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)

Xét tam giác ABC cân tại A(gt)

Có: Góc B= (180 độ - góc A)/2 (định lí)

Xét tam giác ADE cân tại A (cmt)

Có: Góc D= (180 độ - góc A)/2 (định lí)

=> Góc B= Góc D ( =(180 độ - góc A)/2)

=> DE//BC ( 2 góc đồng vị bằng nhau)

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

1 tháng 2 2016

:
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

1 tháng 2 2016

Bài 3 :
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

Ta có:

EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o

(theo tính chất tổng hai góc nhọn trong tam giác vuông)

 AHEˆ=BHDˆ(d.d)

nên EAHˆ=DBHˆ

Xét ΔAEH  ΔBEC ta có:

AH=BC(gt);EAHˆ=EBCˆ(cmt)

Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)

AE=BE (cặp cạnh tương ứng)

 AEBˆ=90o nên ΔAEB vuông cân tại E

BAEˆ=45o (theo tính chất của tam giác giác vuông cân)

hay BACˆ=45o

Vậy .....

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với