K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Tự vẽ hình 

Kẻ BH \(\perp\)AC và \(CK\perp\)AB

Tam giác AKC vuông tại K

=>CK=bsinA (1)

Tam giác BKC vuông tại K 

=>CK=asinB  (2)

Từ (1) (2)=>bsinA=asinB

<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)

Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)

Vậy ....

16 tháng 9 2021

\(a,\) Kẻ \(BH\perp AC;CK\perp AB\)

\(\Delta ACK\) vuông tại K có \(CK=b\cdot\sin A\)

\(\Delta BKC\) vuông tại H có \(CK=a\cdot\sin B\)

\(\Rightarrow b\cdot\sin A=a\cdot\sin B\\ \Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}\left(1\right)\)

Cmtt ta được \(a\cdot\sin C=c\cdot\sin A\left(=BH\right)\)

\(\Rightarrow\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

\(b,\) Không thể suy ra đẳng thức

16 tháng 9 2021

Vì sao không thể suy ra hằng đẳng thức  bạn

17 tháng 7 2019
https://i.imgur.com/7UYQkx1.jpg
6 tháng 8 2019

Tự vẽ hình 

Kẻ BH \(\perp\)AC và \(CK\perp\)AB

Tam giác AKC vuông tại K

=>CK=bsinA (1)

Tam giác BKC vuông tại K 

=>CK=asinB  (2)

Từ (1) (2)=>bsinA=asinB

<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)

Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)

Vậy ....

23 tháng 7 2017

A B C c H b a h

kẻ AH vuông góc với BC 

đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :

sin B = \(\frac{AH}{AB}\),   sin C = \(\frac{AH}{AC}\)

do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)

suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)

tương tự   \(\frac{a}{sinA}=\frac{b}{sinB}\)

vậy suy ra dpcm

23 tháng 7 2017

cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá

27 tháng 9 2020

a) Ta có: \(bc.sinA=ca.sinB=ab.sinC\left(=2S_{ABC}\right)\Rightarrow b.sinA=a.sinB;c.sinB=b.sinC\Rightarrow\frac{a}{sinA}=\frac{b}{sinB};\frac{b}{sinB}=\frac{c}{sinC}\Rightarrowđpcm\)

27 tháng 9 2020

b) Ta có: \(a+b=2c\Leftrightarrow\frac{a}{c}+\frac{b}{c}=2\).

Từ câu a ta suy ra \(\frac{a}{c}=\frac{sinA}{sinC};\frac{b}{c}=\frac{sinB}{sinC}\).

Do đó: \(\frac{sinA}{sinC}+\frac{sinB}{sinC}=2\Rightarrow sinA+sinB=2sinC\) (đpcm).