K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

thiếu đề nhưng mk đã làm 1 bài giống thế này nên biết đoạn sau của nó như sau: CMR:AB+BC+CA>3/2(AH+BH+CH)...Nếu ko đúng thì bỏ qua nhé!

Nếu chỉ có BDT đươn thuần thì : 
Qua H kẻ đt // AC cắt AB tại X và đt // AB cắt AC tại Y => XHY là hbh và HX vg BH, HY vg CH 
AB + AC = BX + (XA + AY) + YC = BX + (AX + XH) + YC > HB + HA + HC 
Tương tự có BA + BC > HA + HB + HC, CA + CB > HA + HB + HC 
Cộng vế theo vế 3 bđt ta có 2(AB + AC + BC) > 3(HA + HB + HC) 
```````````````````````````````````````... 
Ta se Cm một BDT mạnh hơn và toàn diện hơn 
Giả sử a >=b >= c. Do 2S = a ha = b hb = c hc =>ha <= hb <= hc 
Goij A1; B1 ; C1 lan luot la hinh chieu cua A; B : C len cac canh cua Tam giac ABC 
Ta co ha = AH.S/( Sb + Sc) ≤ hb = BH.S/(Sa + Sc) => AH( Sa + Sc) ≤ BH( Sb + Sc) (1 ) 
Ta se CM Sa ≥ Sb 
DO Sa/Sb = BC1/AC1 = BC cosB /( AC cosA) = sinA cosB/(sinB cosA) = tanA/tanB ≥ 1 do a ≥ b suy ra Sa≥ Sb => Sa + Sc ≥ Sb + Sc ( 2) 
Tu (1) va (2 ) suy ra AH ≤ BH, tuong tu ta suy ra BH ≤ CH do do AH ≤ BH ≤ CH \ 
Do 6S = a ha + b hb + c hc = aAH + b BH + c CH + 2(Sa+Sb+Sc) = 
= aAH + b BH + c CH +2S => aAH + b BH + c CH = 4S 
Áp dụng BDT che-bu-sep ta co (a+b+c)(AH + BH + CH) <= 3( a AH + b BH + c CH) 

= 12S = 6absinC = 24R^2 sinA sinB sinC 
Ta dự đoán 12R^2 sinA sinB sinC <= 1/(2√3) (a+b+c)^2 = 2/(√3)R^2 * ( sinA + sinB + sinC)^2 
<=> sinA sinB sinC < = 1/(6√3) ( sinA + sinB + sinC)^2 
Ta có (sinA + sinB + sinC )^2 <= 3( sin^2A + sin^2B + sin^2C) = 
= 3/2 ( 2 - cos^2C + cosC cos( A-B) ) <= 3/2 ( 2 -cos^2C + cosC) 
<= 27/4 =>sinA + sinB + sinC ≤ 3√3/2 
=> 3√3/2 ≥ 3³√(sinA sinB sinC) => ³√(sinA sinB sinC) ≤ √3/2 
suy ra (sinA + sinB + sinC)²/(sinA sinB sinC) ≥ 9/³√(sinA sinB sinC) ≥ 6√3 
Từ đó suy ra (a+b+c)(AH + BH + CH) ≤ √3/3 ( a + b + c )² => 
=> 3/2( AH + BH + CH) ≤ √3/2 (a+b+c) < a + b + c 

17 tháng 8 2016

THIẾU ĐỀ NHƯNG MÌNH LÀM BÀI TƯƠNG TỰ GIỐNG BÀI CỦA BẠN NHA !

Nếu chỉ có BDT đươn thuần thì : 
Qua H kẻ đt // AC cắt AB tại X và đt // AB cắt AC tại Y => XHY là hbh và HX vg BH, HY vg CH 
AB + AC = BX + (XA + AY) + YC = BX + (AX + XH) + YC > HB + HA + HC 
Tương tự có BA + BC > HA + HB + HC, CA + CB > HA + HB + HC 
Cộng vế theo vế 3 bđt ta có 2(AB + AC + BC) > 3(HA + HB + HC) 
```````````````````````````````````````... 
Ta se Cm một BDT mạnh hơn và toàn diện hơn 
Giả sử a >=b >= c. Do 2S = a ha = b hb = c hc =>ha <= hb <= hc 
Goij A1; B1 ; C1 lan luot la hinh chieu cua A; B : C len cac canh cua Tam giac ABC 
Ta co ha = AH.S/( Sb + Sc) ≤ hb = BH.S/(Sa + Sc) => AH( Sa + Sc) ≤ BH( Sb + Sc) (1 ) 
Ta se CM Sa ≥ Sb 
DO Sa/Sb = BC1/AC1 = BC cosB /( AC cosA) = sinA cosB/(sinB cosA) = tanA/tanB ≥ 1 do a ≥ b suy ra Sa≥ Sb => Sa + Sc ≥ Sb + Sc ( 2) 
Tu (1) va (2 ) suy ra AH ≤ BH, tuong tu ta suy ra BH ≤ CH do do AH ≤ BH ≤ CH \ 
Do 6S = a ha + b hb + c hc = aAH + b BH + c CH + 2(Sa+Sb+Sc) = 
= aAH + b BH + c CH +2S => aAH + b BH + c CH = 4S 
Áp dụng BDT che-bu-sep ta co (a+b+c)(AH + BH + CH) <= 3( a AH + b BH + c CH) 

= 12S = 6absinC = 24R^2 sinA sinB sinC 
Ta dự đoán 12R^2 sinA sinB sinC <= 1/(2√3) (a+b+c)^2 = 2/(√3)R^2 * ( sinA + sinB + sinC)^2 
<=> sinA sinB sinC < = 1/(6√3) ( sinA + sinB + sinC)^2 
Ta có (sinA + sinB + sinC )^2 <= 3( sin^2A + sin^2B + sin^2C) = 
= 3/2 ( 2 - cos^2C + cosC cos( A-B) ) <= 3/2 ( 2 -cos^2C + cosC) 
<= 27/4 =>sinA + sinB + sinC ≤ 3√3/2 
=> 3√3/2 ≥ 3³√(sinA sinB sinC) => ³√(sinA sinB sinC) ≤ √3/2 
suy ra (sinA + sinB + sinC)²/(sinA sinB sinC) ≥ 9/³√(sinA sinB sinC) ≥ 6√3 
Từ đó suy ra (a+b+c)(AH + BH + CH) ≤ √3/3 ( a + b + c )² => 
=> 3/2( AH + BH + CH) ≤ √3/2 (a+b+c) < a + b + c 
```````````````````````````````````````... 
Rõ ràng BDT cuối mà ta cm dc mạnh hơn BDT cần CM 

8 tháng 8 2018

Tham khảo nha .

Vẽ  HD // AC . và HE // AB 

Ta có : \(HD//AC\)

và \(BH\perp AC\)( vì H là trực tâm của tam giác ABC )

\(\Rightarrow HD\perp BH\)

\(\Rightarrow DB>BH\)

( Cạnh đối diện với góc vuông)

Chứng minh tương tự như trên ta có :

\(EC//DH\)

\(\Rightarrow CH\perp AB\)

\(\Rightarrow CH\perp CE\)

\(\Rightarrow EC>CH\)(Cạnh đối góc vuông)

Mặt khác ta có :

\(HD//AE\)

\(HE//DA\)

\(\Rightarrow\)Tứ giác AEHD là hình bình hành 

\(\Rightarrow AD=HE\)

Xét tam giác AEH có :

\(HE+AE>AH\)

\(\Rightarrow AD+AE>AH\)

\(\Leftrightarrow AB+AC=AD+DB+AE+EC\)

\(=\left(AD+AE\right)+DB+EC>AH+BH+CH\)

Chứng minh tương tự ta có :

\(AB+BC>AH+BH+CH\)

\(AC+BC>AH+BH+CH\)

Do đó : \(2\left(AB+BC+AC\right)>3\left(AH+BH+CH\right)\)

\(\Rightarrow AB+BC+AC>\frac{3}{2}\left(AH+BH+CH\right)\)(đpcm)

8 tháng 8 2018

A B C D E H

4 tháng 3 2016

mình còn làm được nhiều hơn nè!

    ☻   ت  ヅ  ツ  ッ  シ   Ü    ϡ    ﭢ

✿◕ ‿ ◕✿   ❀◕ ‿ ◕❀   ❁◕ ‿ ◕❁

(◡‿◡✿)   (✿◠‿◠)  ≥^.^≤   (>‿◠)

≧✯◡✯≦   ≧◠◡◠≦   ≧’◡’≦   =☽

≧◔◡◔≦   ≧◉◡◉≦   ≧✯◡✯≦   ≧❂◡❂≦

≧^◡^≦   ≧°◡°≦ ^o^^.^ᵔᴥᵔ^^

(°⌣°)      ٩(^‿^)۶ ٩(͡๏̮͡๏)۶       =^.^=       (•‿•)

(^L^)    (>‿♥)   ♥‿♥◙‿◙       ^( ‘‿’ )^^‿^乂◜◬◝乂   (▰˘◡˘▰)

< (^^,) >».«ಠ_ృ       ಥ_ಥ   v_v►_◄►.◄     >.<ಠ_ರೃ

ಠ╭╮ಠ   מּ_מּಸ_ಸಠ,ಥ໖_໖      Ծ_Ծಠ_ಠ   ●_●     (╥﹏╥)( ´_⊃`)

(►.◄)(ு८ு)   (ಠ_ರೃ)(◕︵◕)*-*^( ‘-’ )^ఠ_ఠ

ಠ~ಠ  ರ_ರ{•̃̾_•̃̾}【•】 _【•】v( ‘.’ )v   ».«       >.<     ॓_॔       (-”-)

(>.<)\m/(>.<)\m/   ⊙▃⊙O.o       v(ಥ ̯ ಥ)v        (ㄒoㄒ)

\˚ㄥ˚\   õ.O     (O.O)⊙.◎)๏_๏|˚–˚|     ‘Ω’   ಠoಠ☼.☼

♥╭╮♥ôヮô◘_◘ਉ_ਉ   $_$◄.►

~,~ಠ▃ಠತಎತ˚⌇˚   ॓.॔‹•.•›ಸ_ಸ~_~˘˛˘

^L^   句_句   (°∀°)ヽ  (`Д´)ノ  ‹(•¿•)›    (•̪●)

(╥╥)   (╭╮)      ⊙︿⊙⊙﹏⊙●︿●●﹏●   {(>_<)}

o(╥﹏╥)o(`・ω・´)இ_இ(• ε •)

(●´ω`●)     १|˚–˚|५(>‘o’)>^( ‘-’ )^<(‘o’<)   @(ᵕ.ᵕ)@(*≗*)

(─‿‿─)     凸(¬‿¬)凸    ¯\(©¿©) /¯   ◤(¬‿¬)◥(∪ ◡ ∪)(*^ -^*)

(●*∩_∩*●)   ◖♪_♪|◗•(_)•!⑈ˆ~ˆ!⑈⋋ō_ō`

‹(•¿•)›   (\/) (°,,°) (\/)╚(•⌂•)╝(-’๏_๏’-)

Ƹ̴Ӂ̴Ʒ       εїз    ☻  ♦  ♣  ♠  ♥  ♂  ♀  ♪  ♫  ☼    ✿ ⊰ ⊱ ✪ ✣  ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲  ❃ ❂ ❁ ❀ ✿ ✶    ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿ ♂ ♀ ∞ ☆  。◕‿◕。  ツⓛ ⓞ ⓥ ⓔ ♡ ღ ☼★ ٿ « » ۩ ║ █ ● ♫ ♪  ☽

4 tháng 3 2016

 ™“☺☻♥♦♣♠•◘○☺◙♂♀☺♪♫ 

Sao mà dễ thế chứ 

a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có 

\(\widehat{BAD}\) chung

Do đó: ΔAEC\(\sim\)ΔADB(g-g)

1 tháng 4 2021

Giupps vs

2 tháng 8 2019

A B C E D F H I G

a) Qua H kẻ HG//AB  cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.

=> HI vuông BH ; CH vuông HG

và AIHG là hình bình hành

Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)

Xét tam giác CHG vuông tại H => CH<CG  

=> CH+BH + AH< BI+CG +AH 

Ta lại có AH <AI+IH (  bất đẳng thức trong tam giác AIH)

mà IH=AG ( AIHG là hình bình hành theo cách vẽ )

=> AH < AI+AG 

Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC

b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC) 

Chứng minh tương tự như câu a.

Ta có: \(AB+AC>HA+HB+HC\)

\(BC+AC>HA+HB+HC\)

\(AB+BC>HA+HB+HC\)

Cộng theo vế ta có:

\(2AB+2AC+2BC>3HA+3HB+3HC\)

=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)

=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)