Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a mình làm chứng minh tương tự nên hơi tắt đó nha, thật ra làm vẫn Ok nhưng mà đi thi học kì hay cấp 3 thì phải chứng minh hẳn 2 cái ra đó nhé
a) Xét tam giác ABH vuông tại H có HD là đường cao
=> AD.AB = AH2 ( Hệ thức lượng) (1)
Xét tam giác ACH vuông tại H có HE là đường cao
=> AE.AC = AH2 ( Hệ thức lượng) (2)
(1)(2) => AD.AB = AE.AC
b) Có AD.AB = AE.AC
=> \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét \(\Delta ADE\) và \(\Delta ACB\) có:
+ \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
+ Chung góc A
=> \(\Delta ADE\) \(\sim\) \(\Delta ACB\) (c-g-c)
=> \(\widehat{AED}=\widehat{ABC}\) (2 góc tương ứng)
a, Gọi giao điểm của AB và EH là O
Xét tg AEO có \(\sin\widehat{A}=\dfrac{OE}{OA}\)
Vì \(\left\{{}\begin{matrix}\widehat{OEA}=\widehat{HDO}=90^0\\\widehat{AOE}.chung\end{matrix}\right.\) nên \(\Delta ODH\sim\Delta OEA\left(g.g\right)\)
\(\Rightarrow\dfrac{OD}{OE}=\dfrac{OH}{OA}\)
Vì \(\left\{{}\begin{matrix}\dfrac{OD}{OE}=\dfrac{OH}{OA}\\\widehat{AOE}.chung\end{matrix}\right.\) nên \(\Delta OHA\sim\Delta ODE\left(c.g.c\right)\)
\(\Rightarrow\dfrac{DE}{AH}=\dfrac{OE}{OA}=\sin\widehat{A}\\ \Rightarrow DE=AH\cdot\sin\widehat{A}\)
b, Áp dụng công thức diện tích tam giác bằng \(\dfrac{1}{2}\) tích hai cạnh kề với sin của góc hợp bởi hai cạnh đó trong tam giác.
\(S_{ABC}=S_{AIB}+S_{AIC}\\ \Rightarrow\dfrac{1}{2}\cdot AB\cdot AC\cdot\sin\widehat{BAC}=\dfrac{1}{2}\cdot AB\cdot AI\cdot\sin\widehat{BAI}+\dfrac{1}{2}AC\cdot AI\cdot\sin\widehat{CAI}\)
Mà AI là p/g nên \(\widehat{BAI}=\widehat{CAI}=\dfrac{1}{2}\widehat{BAC}=30^0\)
\(\Rightarrow\dfrac{1}{2}AB\cdot AC\cdot\sin60^0=\dfrac{1}{2}AB\cdot AI\cdot\sin30^0+\dfrac{1}{2}AC\cdot AI\cdot\sin30^0\\ \Rightarrow\dfrac{\sqrt{3}}{4}\cdot AB\cdot AC=\dfrac{1}{4}AB\cdot AI+\dfrac{1}{4}AC\cdot AI\\ \Rightarrow\dfrac{\sqrt{3}}{4}\cdot AB\cdot AC=\dfrac{1}{4}AI\left(AB+AC\right)\\ \Rightarrow\dfrac{\dfrac{\sqrt{3}}{4}}{\dfrac{1}{4}AI}=\dfrac{AB+AC}{AB\cdot AC}\\ \Rightarrow\dfrac{\sqrt{3}}{AI}=\dfrac{1}{AB}+\dfrac{1}{AC}\left(đpcm\right)\)
1,
+, tính BC
\(BC^2=AB^2+AC^2\Rightarrow BC^2=5^2+12^2=25+144=169\)
\(\Rightarrow BC=\sqrt{169}=13\left(cm\right)\)
+, Tính AH
\(AH\cdot BC=AB\cdot AC\Rightarrow AH=\frac{AB\cdot AC}{BC}=\frac{5\cdot12}{13}=\frac{60}{12}\left(cm\right)\)
a) Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HD\):
\(AH^2=AD.AB\)(hệ thức trong tam giác vuông)
Tương tự \(AH^2=AE.AC\).
Suy ra \(AD.AB=AE.AC\).
b) \(AD.AB=AE.AC\Leftrightarrow\frac{AD}{AC}=\frac{AE}{AB}\)
Xét tam giác \(AED\)và tam giác \(ABC\):
\(\widehat{A}\)chung
\(\frac{AD}{AC}=\frac{AE}{AB}\)
suy ra \(\Delta AED~\Delta ABC\left(c.g.c\right)\)
suy ra \(\widehat{AED}=\widehat{ABC}\).
A B C H D E
Xét tam giác AHC đường cao HE
\(AH^2=AE.AC\)( hệ thức lượng ) (1)
Xét tam giác AHB đường cao HD
\(AH^2=AD.AB\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AE.AC=AD.AB\)ps : mình sửa đề luôn
b, Xét tam giác AED và tam giác ABC ta có :
^A _ chung
\(AE.AC=AD.AB\)( cmt ) \(\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}\)( tỉ lệ thức )
Vậy tam giác AED ~ tam giác ABC ( c.g.c )
=> ^AED = ^ABC ( 2 góc tương ứng )
a) Xét tứ giác ADHE có
\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)(đpcm)