Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I K E F
a/ Dễ dàng chứng minh bằng cách áp dụng hệ thức về cạnh trong các tam giác vuông ABD và ACD :
\(AE.AB=AF.AC=AD^2\)
b/ Bạn tham khảo ở đây nhé : http://olm.vn/hoi-dap/question/633787.html
c/ Áp dụng tứ giác nội tiếp để giải (liên quan đến góc ngoài của tứ giác nội tiếp)
2. A C D B
Từ B kẻ đường phân giác BD ( D thuộc AC)
Ta có : \(tan\left(\frac{\widehat{B}}{2}\right)=tan\widehat{ABD}=\frac{AD}{AB}\)
Mà theo tính chất đường phân giác : \(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{AB+BC}\)
\(\Rightarrow tan\left(\frac{\widehat{B}}{2}\right)=\frac{AC}{AB+BC}\) (đpcm)
1/ Bạn tham khảo ở đây :)
http://olm.vn/hoi-dap/question/633787.html
a) Ta có A, E, F, K, H cùng thuộc đường tròn đường kính AH.
b) Ta có \(\widehat{AMN}=90^o-\widehat{OAB}=90^o-\dfrac{180^o-\widehat{AOB}}{2}=\dfrac{\widehat{AOB}}{2}=\widehat{ACB}\).
Suy ra tứ giác BMNC nội tiếp và \(\Delta SMB\sim\Delta SCN\left(g.g\right)\) nên \(SM.SN=SB.SC\).
c) Ta có \(\widehat{QCB}=\widehat{QAB}=\widehat{HCB};\widehat{QBC}=\widehat{HBC}\) nên Q, H đối xứng với nhau qua BC.
Mà S thuộc BC nên SH = SQ.
Ta lại có \(\widehat{SHB}=\widehat{BHF}-\widehat{MHF}=\widehat{BAC}-\left(90^o-\widehat{AMH}\right)=\widehat{BAC}+\widehat{ACB}-90^o=90^o-\widehat{ABC}=\widehat{SCH}\Rightarrow\Delta SHB\sim\Delta SCH\left(g.g\right)\Rightarrow SQ^2=SH^2=SB.SC\).
d) I là điểm nào vậy bạn?