K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có 

\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{AKC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

Do đó: \(\widehat{ABC}=\widehat{AKC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABD}=\widehat{AKC}\)

Xét (O) có

\(\widehat{ACK}\) là góc nội tiếp chắn \(\stackrel\frown{AK}\)

\(sđ\stackrel\frown{AK}=180^0\)(AK là đường kính)

Do đó: \(\widehat{ACK}=90^0\)(Hệ quả góc nội tiếp)

Xét ΔADB vuông tại D và ΔACK vuông tại C có 

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB\(\sim\)ΔACK(g-g)

27 tháng 4 2023

giúp em vs ạ https://hoc24.vn/hoi-dap/tim-kiem?id=7957785622206&q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn+n%E1%BB%99i+ti%E1%BA%BFp+(O;R).+%C4%90%C6%B0%E1%BB%9Dng+cao+AD,+BE,+CF+c%E1%BA%AFt+nhau+t%E1%BA%A1i+H.+CMR+:+N%E1%BA%BFu+AD+BC=BE+AC=CF+AB+th%C3%AC+tam+gi%C3%A1c+ABC+%C4%91%E1%BB%81u.

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

14 tháng 3 2021

ai đó làm giúp với

 

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined

NA
Ngoc Anh Thai
Giáo viên
22 tháng 5 2021

a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)

Suy ra \(\widehat{KBC}=\widehat{CBH}\).

Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\) 

Vậy tam giác BHK cân tại B và BC là trung trực của HK.

b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).

\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)

Xét hai tam giác ABD và AMC có: 

\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).

Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).

Suy ra góc ABC = AEF => góc AEF = góc AMC.

Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)

d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC. 

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

b: góc ACK=góc ABK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK=AD*2R

a: Sửa đề: BFEC

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

góc BAK=góc BAD+góc DAK

góc DAC=góc DAK+góc CAK

mà góc BAD=góc CAK

nên góc BAK=góc DAC

Xét ΔABK vuông tại B và ΔADC vuông tại D có

góc BAK=góc DAC

=>ΔABK đồng dạng với ΔADC

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

b; góc ACK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK

a:Xét tứ giác AFDC có

góc AFC=góc ADC=90 độ

Do đó: AFDC là tứ giác nội tiếp

b: Gọi AG là đường kính của (O)

Xét (O) có

ΔACG nội tiếp

AG là đường kính

Do đo: ΔACG vuông tại C

Xét ΔACG vuông tại C và ΔADB vuông tại D có

góc AGC=góc ABD

Do đó: ΔACG đồng dạng với ΔADB

=>AC/AD=AG/AB

=>AB*AC=AG*AD