Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘, ˆBFC=90∘
Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.
b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB
Suy ra tứ giác BFMS là tứ giác nội tiếp.
Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.
c)
+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)
Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)
Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).
+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.
Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.
Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)
Ta có:
ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.
ΔAME∽ΔACSnên AM.AS = AE.AC.
Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.
Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.
Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)
Từ (3) và (4) suy ra HS // PI, hay KH // PI.
ID cắt EF tại G. cần chứng minh A,G,M thẳng hàng
A B C I D E F M M' G S T
Ta có : AG cắt BC tại M'. đường thẳng qua G song song với BC cắt AB,AC tại S,T
Dễ thấy \(ID\perp BC\)\(\Rightarrow IG\perp ST\)
Tứ giác FSGI nội tiếp, tứ giác IGET nội tiếp \(\Rightarrow\hept{\begin{cases}\widehat{IFG}=\widehat{ISG}\\\widehat{ITG}=\widehat{IEG}\end{cases}\Rightarrow\widehat{ISG}=\widehat{ITG}}\)( Vì \(\widehat{IFG}=\widehat{IEG}\))
\(\Rightarrow\Delta IST\)cân tại I có \(IG\perp ST\)nên GS = GT
Xét hình thang STCB có BS,M'G,CT cắt nhau tại A và G là trung điểm của ST nên M' là trung điểm của BC
\(\Rightarrow M'\equiv M\)hay A,G,M thẳng hàng
A B C F E K D I M G H N
AM cắt KI tại H
Dễ thấy \(AI\perp EF\)nên \(KG\perp AI\)
\(\Delta AIK\)có \(IG\perp AK;KG\perp AI\)nên G là trực tâm \(\Rightarrow AG\perp KI\)tại H
AI cắt EF tại N
Tứ giác ANHK nội tiếp \(\Rightarrow IH.IK=IN.IA=IF^2=ID^2\Rightarrow\frac{IH}{ID}=\frac{ID}{IK}\)
\(\Rightarrow\Delta IDH\approx\Delta IKD\left(c.g.c\right)\)\(\Rightarrow\widehat{IDH}=\widehat{IKD}\)( 1 )
Tứ giác IHMD nội tiếp \(\Rightarrow\widehat{IDH}=\widehat{IMH}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{IKD}=\widehat{IMH}\)
Mà \(\widehat{IMH}+\widehat{MIH}=90^o\)suy ra \(\widehat{IKD}+\widehat{MIH}=90^o\)
\(\Rightarrow MI\perp DK\)
Em không vẽ được hình, xin thông cảm
a, Ta có góc EAN= cungEN=cung EC+ cung EN
Mà cung EC= cung EB(E là điểm chính giữa cung BC)
=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)
=> tam giác AEN đồng dạng tam giác FED
Vậy tam giác AEN đồng dạng tam giác FED
b,Ta có EC=EB=EM
Tam giác EMC cân tại E => EMC=ECM
MÀ EMC+AME=180, ECM+ABE=180
=> AME = ABE
=> tam giác ABE= tam giác AME
=> AB=AM => tam giác ABM cân tại A
Mà AE là phân giác => AE vuông góc BM
CMTT => AC vuông góc EN
MÀ AC giao BM tại M
=> M là trực tâm tam giác AEN
Vậy M là trực tâm tam giác AEN
c, Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH
Vì M là trực tâm của tam giác AEN
=> \(EN\perp AN\)
Mà \(OI\perp AN\)(vì I là trung điểm của AC)
=> \(EN//OI\)
MÀ O là trung điểm của EH
=> I là trung điểm của MH (đường trung bình trong tam giác )
=> tứ giác AMNH là hình bình hành
=> AH=MN
Mà MN=NC
=> AH=NC
=> cung AH= cung NC
=> cung AH + cung KC= cung KN
Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )
NBK là góc nội tiếp chắn cung KN
=> gócKMC=gócKBN
Hay gócKMC=gócKBM
=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)
Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc DFC=góc EBC
góc EFC=góc DAC
góc EBC=góc DAC
=>góc DFC=góc EFC
a) Do AE tiếp xúc (I) tại E nên \(\widehat{AEI}=90^o\). Đồng thời dễ dàng chứng minh \(AI\perp EF\) tại J.
Tam giác AEI vuông tại E có đường cao EJ nên \(IJ.IA=IE^2=ID^2=r^2\)
\(\Rightarrow\dfrac{IJ}{ID}=\dfrac{ID}{IA}\). Từ đó dễ có đpcm.
b) Dễ dàng chứng minh tứ giác IDSJ nội tiếp (do có \(\widehat{IJS}=\widehat{IDS}=90^o\)). Do đó \(\widehat{TIJ}=\widehat{TSD}\), dẫn đến \(\Delta TIJ~\Delta TSD\left(g.g\right)\) \(\Rightarrow\dfrac{TI}{TS}=\dfrac{TJ}{TD}\) \(\Rightarrow\) đpcm
Gọi P là giao điểm của AD và IS. Khi đó \(\widehat{PID}=\widehat{SID}=\widehat{SJD}\) và \(\widehat{PDI}=\widehat{ADI}=\widehat{IJD}\) (do đã có \(\Delta IJD~\Delta IDA\) ở câu a))
Do đó \(\widehat{PID}+\widehat{PDI}=\widehat{SJD}+\widehat{IJD}=\widehat{SJI}=90^o\)
\(\Rightarrow\Delta IPD\) vuông tại P, dẫn tới đpcm.
c) Gọi Q là giao điểm của AD và EF. Qua Q kẻ đường thẳng song song với BC cắt DE, DN lần lượt tại X, Y.
Trước hết, ta chứng minh \(\dfrac{EQ}{ES}=\dfrac{FQ}{FS}\) (*)
Ta dễ dàng chứng minh AD, BE, CF đồng quy do định lý Ceva đảo trong tam giác ABC.
\(\Rightarrow\dfrac{QF}{QE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (Ceva thuận)
Mặt khác, áp dụng định lý Menelaus cho tam giác AEF với cát tuyến SBC, ta có: \(\dfrac{SF}{SE}.\dfrac{BA}{BF}.\dfrac{CE}{CA}=1\)
Từ đó suy ra \(\dfrac{QF}{QE}=\dfrac{SF}{SE}\Rightarrow\dfrac{EQ}{ES}=\dfrac{FQ}{FS}\) . Vậy (*) được chứng minh.
Áp dụng định lý Thales \(\Rightarrow\dfrac{YQ}{SD}=\dfrac{FQ}{FS};\dfrac{XQ}{SD}=\dfrac{EQ}{ES}\)
Kết hợp với (*), ta có ngay \(YQ=XQ\), từ đó dễ dàng suy ra M là trung điểm NE dựa vào bổ đề hình thang.