K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

undefined

a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được  b + c - a 2 = AD

b,  S A B C = S A I B + S B I C + S C I A

Mà ID = IE = IF = r =>  S A B C  = p.r

c, Vì AM là phân giác của  B A C ^ =>  B M M C = B A A C

Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b

29 tháng 4 2018

Hs tự làm

tớ ko bt giải nhưng cậu có thể viết nguyên cái bài này lại lên google là có kết quả thôi :))

19 tháng 3 2020

Cậu ơi tớ tìm rồi nhưng không hiểu gì cả

20 tháng 8 2023

a) Ta dễ chứng minh \(\widehat{BIC}=90^o+\dfrac{\widehat{A}}{2}\)

Ta thấy \(\widehat{BFK}=\widehat{A}+\widehat{AEF}=\dfrac{\widehat{A}}{2}+\widehat{IAE}+\widehat{AEF}\)  \(=90^o+\dfrac{\widehat{A}}{2}\)

Nên \(\widehat{BIC}=\widehat{BFK}\)

Xét 2 tam giác BIC và BFK, ta có: 

\(\widehat{FBK}=\widehat{IBC}\) (do BI là tia phân giác của \(\widehat{FBC}\)) và \(\widehat{BIC}=\widehat{BFK}\left(cmt\right)\) 

\(\Rightarrow\Delta BIC~\Delta BFK\left(g.g\right)\) (đpcm)

b) Từ \(\Delta BIC~\Delta BFK\Rightarrow\dfrac{BI}{BF}=\dfrac{BC}{BK}\) \(\Rightarrow\dfrac{BI}{BC}=\dfrac{BF}{BK}\)

Xét 2 tam giác BIF và BCK, ta có

\(\dfrac{BI}{BC}=\dfrac{BF}{BK}\) và \(\widehat{IBF}=\widehat{CBK}\)

\(\Rightarrow\Delta BIF~\Delta BCK\left(c.g.c\right)\)

\(\Rightarrow\widehat{BKC}=\widehat{BFI}\)

Mà \(\widehat{BFI}=90^o\) nên \(\widehat{BKC}=90^o\) (đpcm)

20 tháng 8 2023

ai làm giúp phần a với, mãi ko ra:(((

1 tháng 7 2019

4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.

Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác  B D C ^

Ta có  K Q C ^ = 2 K M C ^  (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))

N D C ^ = K M C ^  (góc nội tiếp cùng chắn cung  N C ⏜ )

Mà  B D C ^ = 2 N D C   ^ ⇒ K Q C ^ = B D C ^

Xét 2 tam giác BDC & KQC là các các tam giác vuông tại DQ có hai góc ở  ⇒ B C D ^ = B C Q ^  do vậy D, Q, C thẳng hàng nên KQ//PK

Chứng minh tương tự ta có  ta có D, P, B thẳng hàng và DQ//PK

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).