K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

Ta có:

\(\frac{S_{BDM}}{S_{BDC}}=\frac{BM}{BC}=\frac{1}{3}\left(1\right)\)

Ta lại có

\(\hept{\begin{cases}\frac{S_{AIB}}{S_{BIM}}=\frac{AI}{MI}=\frac{1}{2}\\\frac{S_{ADI}}{S_{MDI}}=\frac{AI}{MI}=\frac{1}{2}\end{cases}}\)

\(\Rightarrow S_{BDM}=S_{BIM}+S_{DIM}=2S_{AIB}+2S_{ADI}=2S_{ABD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{2S_{ABD}}{S_{BDC}}=\frac{1}{3}\)

\(\Rightarrow\frac{S_{ABD}}{S_{BDC}}=\frac{1}{6}=\frac{AD}{DC}\)

\(\Rightarrow\frac{AD}{AC}=\frac{1}{7}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,D$ thẳng hàng:

$\frac{AD}{DC}.\frac{IM}{IA}.\frac{BC}{BM}=1$

$\Leftrightarrow \frac{AD}{DC}.2.3=1$

$\Leftrightarrow \frac{AD}{DC}=\frac{1}{6}$

$\Rightarrow \frac{AD}{DC}=\frac{1}{7}$

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Hình vẽ:

undefined

a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC

b: Xet ΔABC có HK//BC

nên AH/AB=HK/BC

=>HK/18=6/9=2/3

=>HK=12(cm)

c: Xét ΔABM có HI//BM

nên HI/BM=AI/AM

Xét ΔAMC có IK//MC

nên IK/MC=AI/AM

=>HI/BM=IK/MC

mà BM=CM

nên HI=IK

=>I là trung điểm của HK

26 tháng 2 2023

vẽ hình nữa

 

10 tháng 6 2021

A B C I N M K

Ta có: 

\(\dfrac{MK}{BI}=\dfrac{MA}{AB}\)             \(\dfrac{NK}{IC}=\dfrac{AN}{AC}\)

\(\dfrac{\Rightarrow MK}{BI}=\dfrac{NK}{CI}\)

Mà \(BI=IC\Rightarrow MK=NK\) 

-Chúc bạn học tốt-

12 tháng 9 2019

1

dQwxpji.png

a

Xét tam giác BDC có M là trung điểm của BC,ME//BD nên E là trung điểm của DC hay DE=CE.

Xét tam giác AME có I là trung điểm của AM,ID//ME nên D là trung điểm của AE hay AD=DE.

Suy ra AD=DE=CE.

b

Ta có ID là đường trung bình nên \(ID=\frac{1}{2}ME\)

ME là đường trung bình nên \(ME=\frac{1}{2}BD\Rightarrow DI=\frac{1}{4}BD\)

12 tháng 9 2019

2

 vFlt02p.png

a

Kẻ ME//AC cắt BD tại E.

Ta có:ME//AC,M là trung điểm của BC nên E là trung điểm của BD.

Khi đó ME là đường trung bình nên \(ME=\frac{1}{2}DC=AD\)

Xét \(\Delta\)ADI và \(\Delta\)MIE có:ME=AD;\(\widehat{IAD}=\widehat{IME}\);\(\widehat{IDA}=\widehat{IEM}\)

\(\Rightarrow\Delta ADI=\Delta MIE\left(g.c.g\right)\Rightarrow ID=IE\)

b

Kẻ MF//BD cắt AC tại F

Ta có:

M là trung điểm của BC,MF//BD nên F là trung điểm của DC.Khi đó D là trung điểm của AF,I là trung điểm của AM nên:

\(DI=\frac{1}{2}MF\)

Mặt khác:EM//DC;ED//MF nên theo tính chất cặp đoạn chắn ta được MF=ED.

\(\Rightarrow DI=\frac{1}{2}BE\Rightarrow ID=\frac{1}{2}IB\)

Xét ΔABC có 

M∈AB(gt)

N∈AC(gt)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(gt)(1)

Do đó: MN//BC(Định lí Ta lét đảo)

Suy ra: MK//BI và NK//CI

Xét ΔABI có 

M∈AB(gt)

K∈AI(gt)

MK//BI(Gt)

Do đó: \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\)(Hệ quả của Định lí Ta lét)(2)

Xét ΔACI có 

K∈AI(gt)

N∈AC(gt)

KN//IC(cmt)

Do đó: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)(Hệ quả của Định lí Ta lét)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{MK}{BI}=\dfrac{NK}{CI}\)

mà BI=CI(I là trung điểm của BC)

nên MK=NK(đpcm)