Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(S_{ABD}=\dfrac{1}{2}\cdot48=24\left(cm^2\right)\)
=>\(S_{ABI}=12\left(cm^2\right)\)
b: Kẻ DE//BK
Xét ΔADE có
I là trung điểm của AD
IK//DE
=>IK là đường trung bình
=>IK=1/2DE
Xét ΔKBC có DE//BK
nên DE/BK=CD/CB=1/2
=>BK=2DE=4IK
Giải
Ta có: S ABC = S CBD (vì có cùng chiều cao hạ từ đỉnh B xuống đáy AC)
S ABC (S CBD) là:
360 : 2 = 180 (cm\(^2\))
Ta có: S BAE = S CAE (vì có cùng chiều cao hạ từ đỉnh A xuống đáy BC)
S BAE (S CAE) là:
360 : 2 = 180 (cm\(^2\))
Ta có: S ABI = S EBI (vì có cùng chiều cao hạ từ đỉnh B xuống đáy AE)
S ABI (S EBI) là:
180 : 2 = 90 (cm\(^2\))
Ta có: S ABI = S AID = 90 cm\(^2\) (vì có cùng chiều cao hạ từ đỉnh A xuống đáy BD)
Vậy diện tích của tam giác AID là 90 cm\(^2\)
2/5 x 1/X + 1/X x 2 = 0,1
1/X x ( 2/5 + 2 ) = 0,1
1/X x 12 / 5 = 0,1
1/X = 0,1 :12/5 = 1/10 : 12/5
1/X = 1/24
Vậy X = 24