Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
a)ΔABCđều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 60 0 mà AD = BE = CF (gt)
=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF
ΔADF,ΔBEDcó AD = BE (gt) ; góc DAF = góc EBD = 60 0 (cmt) ; AF = BD (cmt)
nên ΔADF = ΔBED c.g.c
=> DF = ED (2 cạnh tương ứng) (1)
ΔADF,ΔCFEcó AD = CF (gt) ; góc DAF = góc FCE = 60 0 (cmt) ; AF = CE (cmt)
nên ΔADF = ΔCFE c.g.c
=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.
VậyΔDEFđều
b) không biết làm
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Do K đối xứng với D qua trung điểm của BC nên ta có
\(BD=CK,BK=CD\)
Dựng đường kính DF của (I). Theo hình , thì ta được ba điểm A, F , K thẳng hàng
ta có\(\widehat{KDL}=\widehat{DIC}\left(=90^0-\widehat{CID}\right)=>\)tam giác IDC = tam giác DKL (g.g), từ đó suy ra
\(\frac{DF}{DK}=\frac{2ID}{DK}=\frac{2DC}{KL}=\frac{KB}{KN}\)
=> tam giác DFK = tam giác KBN (c.g.c)
zì zậy nên : \(\widehat{KNB}=\widehat{DKF}=90^0-\widehat{NKF}\)
=>\(\widehat{KNB}+\widehat{NKF}=90^0,\)do đó \(AK\perp BN\)
A B C I D E F N M P Q 1 1
Không mất tính tổng quát , giả sử AB < AC ( bỏ qua trường hợp đơn giản AB = AC )
Dễ thấy P là điểm chính giữa \(\widebat{EF}\) nên D,N,P thẳng hàng
Cần chứng minh \(\widehat{IMC}=\widehat{PDC}\)
Ta có : \(\widehat{IMC}=\widehat{MIB}+\widehat{B_1}=\frac{1}{2}\widehat{BIC}+\widehat{B_1}=\frac{1}{2}\left(180^o-\widehat{B_1}-\widehat{C_1}\right)+\widehat{B_1}\)
\(=\frac{1}{2}\left(180^o-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\right)+\frac{\widehat{ABC}}{2}=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\widehat{PDC}=\widehat{PDE}+\widehat{EDC}=\frac{1}{2}\widehat{EDF}+\widehat{EDC}\)\(=\frac{1}{2}\left(180^o-\widehat{FDB}-\widehat{EDC}\right)+\widehat{EDC}\)
\(=90^o-\frac{\widehat{FDB}}{2}+\frac{\widehat{EDC}}{2}=90^o-\frac{90^o-\widehat{B_1}}{2}+\frac{90^o-\widehat{C_1}}{2}\)
\(=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\Rightarrow\widehat{IMC}=\widehat{PDC}\Rightarrow IM//ND\)
b) Theo câu a suy ra \(\widehat{MID}=\widehat{IDP}\)
Mà \(\Delta PID\)cân tại I ( do IP = ID ) nên \(\widehat{IPD}=\widehat{IDP}\)
Suy ra \(\widehat{MID}=\widehat{IPD}=\widehat{QPN}\)
\(\Rightarrow\Delta IDM\approx\Delta PQN\left(g.g\right)\)
c) từ câu b \(\Rightarrow\frac{IM}{PN}=\frac{ID}{PQ}=\frac{IP}{PQ}\)( 1 )
Theo hệ thức lượng, ta có : \(IQ.IA=IE^2=IP^2\)
Do đó : \(\frac{QP}{IP}=1-\frac{IQ}{IP}=1-\frac{IP}{IA}=\frac{PA}{IA}\)
Suy ra \(\frac{IP}{QP}=\frac{IA}{PA}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{IM}{PN}=\frac{IA}{PA}\)kết hợp với IM // PN suy ra A,M,N thẳng hàng