Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I D E F H K
a) Từ I hạ IH,IK lần lượt vuông góc với AB,AC. Theo tính chất điểm nằm trên phân giác của góc thì IH = IK.
Xét \(\Delta\)IHE và \(\Delta\)IKD: IH = IK, ^IHE = ^IKD = 900, IE = ID (gt) => \(\Delta\)IHE = \(\Delta\)IKD (Ch.cgv)
=> ^IEH = ^IDK hay ^IEA = ^IDC => Tứ giác ADIE nội tiếp
=> ^BAC = 1800 - ^DIE = 1800 - ^BIC = 1800 - (1800 - ^ABC/2 - ^ACB/2) = ^ABC/2 + ^ACB/2
= 900 - ^BAC/2 => 3.^BAC = 1800 => ^BAC = 600. Vậy góc BAC = 600.
b) Trên cạnh BC lấy điểm F sao cho IF là phân giác của ^BIC.
Theo câu a: ^BAC = 600, tứ giác ADIE nội tiếp => ^DIE = ^BIC = 1200 => ^BIF = ^CIF = 600
Mà ^BIE = ^CID = ^BAC = 600 nên ^BIE = ^BIF = ^CIF = ^CID
Dễ dàng chỉ ra \(\Delta\)BEI = \(\Delta\)BFI (g.c.g), \(\Delta\)CDI = \(\Delta\)CFI (g.c.g)
=> BE = BF,CD = CF. Do đó BE + CD = BC. Tức là \(\frac{BE}{BC}+\frac{CD}{BC}=1\)
Áp dụng ĐL đường phân giác trong tam giác: \(\frac{BE}{BC}=\frac{AE}{AC}\left(=\frac{IE}{IC}\right)=\frac{BE+AE}{BC+AC}=\frac{AB}{BC+AC}\)
Từ đó \(\frac{AB}{BC+CA}+\frac{AC}{AB+BC}=1\)=> \(\frac{AB+BC+CA}{AB+BC}+\frac{AB+BC+CA}{BC+CA}=3\)
Vậy thì \(\frac{1}{AB+BC}+\frac{1}{BC+CA}=\frac{3}{AB+BC+CA}\) (đpcm).
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Xét \(\Delta\)ABC cân tại A có :
AH là đường cao
\(\Rightarrow\)AH là đường trung tuyến
\(\Rightarrow\)H là trung điểm của BC
\(\Rightarrow\)BH = HC =\(\dfrac{BC}{2}\)\(\dfrac{16}{2}=8\)
Xét \(\Delta\)AHB vuông tại H có:
\(\cos\)B=\(\dfrac{BH}{AB}=\dfrac{8}{10}\)=0.8
\(\Rightarrow\Lambda B\approx37\)độ
Ta có : góc B = góc C (Tam giác ABC cân tại A)
Mà góc B\(\approx37\)độ
\(\Rightarrow\)góc C\(\approx\)37 độ
b, Xét \(\Delta\)ABC có :
góc BAC+gócACB+góc ABC=180
\(\Rightarrow\)góc BAC=106 độ
Xét \(\Delta\)AHB vuông tại H có :
\(AB^2=AH^2+HB^2\Rightarrow AH=6\)
Ta có \(AI=\dfrac{1}{3}AH\Rightarrow HI=\dfrac{2}{3}AH\)
\(\Rightarrow\)HI=4cm
Xét tam giác BDC có
\(HI\) song song CD
\(\Rightarrow\dfrac{HI}{CD}=\dfrac{BH}{CH}=\dfrac{8}{16}=\dfrac{1}{2}\)
\(CD=8cm\)
Xét tứ giác AHCD có :
AH song somg CD
\(\Rightarrow\)AHCD là hình thang
Diện tích hình thang AHCD là :
\(\dfrac{1}{2}\left(6+8\right)\times8=56cm^2\)
Diện tích AHB là :
\(\dfrac{1}{2}\times6\times8=24cm^2\)
Diện tích tứ giác ABCD là
\(56+24=80cm^2\)
ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ
Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.
Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó
\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)
Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:
\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)
Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.
Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)
Đến đây dễ rồi nha, làm tiếp thì chán quá :(
Mysterious Person Akai Haruma Nguyễn Thanh Hằng Mashiro Shiina