K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AHCD có

I là trung điểm chung của AC và HD

=>AHCD là hình bình hành

Hình bình hành AHCD có \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

20 tháng 11 2023

Xét tứ giác AHCD có

I là trung điểm chung của AC và HD

Do đó: AHCD là hình bình hành

Hình bình hành AHCD có\(\widehat{AHC}=90^0\)

nen AHCD là hình chữ nhật

 

5 tháng 11 2023

loading...Do D và H đối xứng nhau qua I (gt)

⇒ I là trung điểm của DH

Do AH là đường cao của ∆ABC (gt)

⇒ AH ⊥ BC

⇒ ∠AHC = 90⁰

Tứ giác AHCD có:

I là trung điểm của AC (gt)

I là trung điểm của DH (cmt)

⇒ AHCD là hình bình hành

Mà ∠AHC = 90⁰ (cmt)

⇒ AHCD là hình chữ nhật

11 tháng 12 2023

Xét tứ giác AHCD có

I là trung điểm chung của AC và HD

=>AHCD là hình bình hành

Hình bình hành AHCD có \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

11 tháng 12 2023

+)Xét tứ giác AHCD có : 

I là trung điểm chung của AC và HD

=>AHCD là hình bình hành

+)Hình bình hành AHCD có góc AHC = 90độ

=> AHCD là hình chữ nhật

1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng vớiH qua I . Chứng minh tứ giác AHCD là hình chữ nhật.2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,AC . Chứng minh:a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10cm.4. Cho tứ giác ABCD có hai đường...
Đọc tiếp

1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.

4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;

b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.

1

Bài 1: 

Xét tứ giác AHCD có 

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

15 tháng 11 2021

Xét tứ giác AHCD có 

M là trung điểm của AC

M là trung điểm của HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

10 tháng 11 2021

có: 

M là trung điểm của AC (gt)

D đối xứng H qua M(gt) => M là trung điểm của DH

Xét tứ giác AHCD có: 

2 đường chéo cắt nhau tại trung điểm mỗi đường(cmt)

=> Tứ giác AHCD là hình chữ nhật

Nhớ tick cho mình nha

9 tháng 6 2018

Lý thuyết: Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

+ Trong Δ AHC vuông có I là trung điểm của AC

⇒ HE là đường trung tuyến của Δ AHC.

⇒ HI = 1/2AC = AI = IC.

Mà E đối xứng với H qua I ⇒ HI = IE.

Khi đó ta có HI = IE = AI = IC.

+ Xét Δ HCE có CI là đường trung tuyến ứng với cạnh HE

mà CI = 1/2HE ⇒ Δ HCE vuông tại C.

Tương tự xét với Δ AHE,Δ AEC đều là các tam giác vuông tại A, E.

Xét tứ giác AHCE có  E A H ^ = A H C ^ = H C E ^ = C E A ^ = 90 0

⇒ AHCE là hình chữ nhật.