K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

câu này đề sai nha bn

11 tháng 12 2017

mk thấy nó cứ sai sai ấy nhonhung

NM
11 tháng 12 2020

A B C M D N E

.ta có BCAE có hai đường chéo cắt nhau tại trung điểm mỗi đường, nên BCAE là hình bình hành

suy ra BC//AE và BC=AE

tương tự ta có BC//AD và BC=AD

từ hai điều trên ta có AD=AE và A,D,E thẳng hàng

11 tháng 12 2020

mình chưa học hình bình hành ~~~

10 tháng 12 2016

A B C N M E D 1 2 1 2

a) Xét \(\bigtriangleup ADM\)\(\bigtriangleup CBM\) ta có :

MD = MB (gt)

\(\widehat{M_1}=\widehat{M_2}\) (2 góc đối đỉnh)

AM = CM (gt)

=> \(\bigtriangleup ADM=\bigtriangleup CBM\) (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét \(\bigtriangleup AEN\)\(\bigtriangleup BCN\) ta có :

AN = BN (gt)

\(\widehat{N_1}=\widehat{N_2}\) (2 góc đối đỉnh)

EN = CN (gt)

=> \(\bigtriangleup AEN=\bigtriangleup BCN\) (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : \(\bigtriangleup ADM=\bigtriangleup BCM\) (CMT)

=> \(\widehat{ADM}=\widehat{BCM}\) (2 góc tương ứng)

\(\widehat{ADM}\)\(\widehat{BCM}\) là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : \(\bigtriangleup AEN=\bigtriangleup BCN\) (CMT)

=> \(\widehat{AEN}=\widehat{BCN}\) (2 góc tương ứng)

=> Mà \(\widehat{AEN}\)\(\widehat{BCN}\) là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => \(A,D,E\) thẳng hàng (theo tiên đề Ơ-clit)

10 tháng 12 2016

Giúp mk với các bạn ơi

2 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh

Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)

Vì N là trung điểm AB và CE nên ACBE là hbh

Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)

\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)

2 tháng 12 2021

 "hbh" là gì vậy bạn

2 tháng 12 2021

Tham khảo

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)

22 tháng 12 2019

Bạn tham khảo nha

https://olm.vn/hoi-dap/detail/97161219222.html

Hơi khác đó 

Học tốt

12 tháng 10 2021

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)

12 tháng 10 2021

Cảm ơn nhoa:3

 

10 tháng 1 2020

A B C M N D E

a, +)Xét \(\Delta BCN\) và \(\Delta AEN\) có:

NC= NE (GT)

\(\widehat{BNC}=\widehat{ANE}\) ( đối đỉnh)

BN=NA (GT)

\(\Rightarrow\Delta BCN=\Delta AEN\)  (c-g-c)

b, Theo câu a, ta có  \(\Delta BCN=\Delta AEN\)

=> BC=AE  (2 cạnh tương ứng)           (1)

c, Xét \(\Delta ADM=\Delta CBM\)

AM=BM  (gt)

\(\widehat{AMD}=\widehat{CMB}\) (đối đỉnh)

DM=BM  (gt)

\(\Rightarrow\Delta ADM=\Delta CBM\)

=> AD= BC  ( 2 cạnh tương ứng)   (2)

Từ (1) và (2)  => AD= AE

c,  Theo câu a, ta có \(\Delta BCN=\Delta AEN\)

      =>\(\widehat{CBN}=\widehat{EAN}\)( 2 góc tương ứng)

Mà 2 góc này ở vị trí SLT => AE//BC   (*1)

Theo câu b ta có \(\Delta ADM=\Delta CBM\)

             =>  \(\widehat{ADM}=\widehat{CBM}\) ( 2 goc t/ứ)

Mà 2 góc này ở vị trí SLT => AD//BC   (*2)

Từ (*1) và (*2) => E, A, D thẳng hàng  (theo tiên đề Ơ- clic)

Mở rộng thêm nha

Từ E, A ,D thẳng hàng  =>A nằm giữa E và D  ( vs kiến thưc lp 7 thì suy a luôn v)

Kết hợp vs cả cái AE= AD => A là trung điểm của DE