K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

Bạn vẽ hình đi

27 tháng 2 2020

a, xét tam giác MAB và tam giác MDC có : 

MB = MC do M là trđ của BC (gt)

MD = MA (GT)

góc BMA = góc DMC (Đối đỉnh)

=> tam giác MAB = tam giác MDC (c-g-c)

b, tam giác MAB = tam giác MDC (Câu a)

=> AB = DC (đn)

và góc BAM = góc MDC (đn) mà 2 góc này slt

=> AB // DC (Đl)

c, AB // DC (Câu  b)

=> góc ABC = góc BCD (slt)

xét tam giác ABC và tam giác DCB có : BC chung

AB = DC (câu b)

=> tam giác ABC = tam giác DCB (c-g-c)

=> góc BAC = góc CDB (đn)

a) Xét \(\Delta MAB\)và \(\Delta MDC\)có:

          MA = MD (gt)

          \(\widehat{BMA}=\widehat{CMD}\)(2 góc đối đỉnh)

          MB = MC (gt)

\(\Rightarrow\Delta MAB=\Delta MDC\left(c-g-c\right)\)

\(\Rightarrow AB=DC\)(2 cạnh tương ứng)

     \(\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB//CD\)

b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:

          MA = MD (gt)

         \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh)

         MB = MC (gt)

\(\Rightarrow\Delta ACM=\Delta DBM\left(c-g-c\right)\)

\(\Rightarrow AC=DB\)(2 cạnh tương ứng)

Xét \(\Delta BAC\)và \(\Delta CDB\)có:

      AB = DC (cmt)

     AC = DB (cmt)

     BC là cạnh chung

\(\Rightarrow\Delta BAC=\Delta CDB\left(c-c-c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{CDB}\)(2 góc tương ứng)

c) Bn tự lm nhá!! Phần này mk chưa nghĩ ra. Tốn chất xám lắm!!!!!

5 tháng 2 2017

cần vẽ hình 0 bạn

5 tháng 2 2017

có bạn ơi

12 tháng 12 2015

Hình tự vẽ nhé!

Bài giải:

c)Theo câu a ta có: Tam giác MAB=MDC=>Góc BAM=CDM.

Xét Tam giác AEM và DFM có:

AE=DF(GT)

Góc BAM=CDM (CMT)

AM=DM(GT)

=> Tam giác AEM=Tam giác DFM (c.g.c) => Góc AME=DMF(*)( góc tương ứng).

Mặt khác MA và MD là 2 tia đối nhau nên ta có:Góc AMF+DMF= 180 độ.

Từ (*) => Góc AMF+AME=180 độ =>ME và MF là hai tia đối nhau (theo dhnb) => E;M;F thẳng hàng(đpcm)

 

26 tháng 11 2018

1 Xét 2 tam giác MAB và tam giác MDC:

Ta thấy:

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

BM=MC (gt)

MA=MD (gt)

Từ các giả thiết trên, suy ra:

\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)

1 tháng 3 2018