Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
a) Có BD//ME hay ID//ME
Xét ΔAME, có :
I là trung điểm của AM (gt), ID//ME (cmt)
=> D là trung điểm của AE
Hay AD=ED. (1)
Xét ΔDBC, có :
M là trung điểm của BC(gt), BD//ME(gt)
=> E là trung điểm của DC
Hay DE=CE (2)
Từ (1) và (2) => AD=ED=CE. ( đpcm)
b)
Xét ΔBDC, có
BM=CM(cm câu a), DE=CE(cm câu a)
=>ME là đường trung bình của ΔBDC
=>ME= 1/2 BD. (*)
Xét ΔAME, có:
AI=IM (cm câu a), AD=DE(cm câu a)
=> ID là đường trung bình của ΔAME
=> ID= 1/2 ME (**)
Từ (*) và (**) => ID= 1/2ME, mà ME=1/2BD
=> ID=1/2 . 1/2 BD
=> ID = 1/4 BD (đpcm)
a) Xét tam giác BDC có :
M là trung điểm BC và ME // BD
=> DE= EC (1)
Xét tam giác AME, có :
I là trung điểm AM và ID//ME (BD//ME)
=> AD= DE (2)
Từ (1) và (2) => AD= DE = EC (đpcm)
b ) Vì ME là đường trung bình tam giác BDC (tự chứng minh)
=> ME= 1/2BD (3)
Vì ID là đường trung bình tam giác AME ( tự chứng minh)
=> ID= 1/2 ME (4)
Từ (3) và (4) => ID = 1/4 BD (đpcm)
Qua K vẽ đường thẳng // với AB cắt AC tại H.
=> AHKD là hình bình hành => DK = AH (1)
Gọi giao điểm của AK và DH là O. Vì AHKD là HBH => DO = OH
Xét 3 đường thẳng MA, CA, BA đồng quy tại A cắt 2 đường thẳng DH và BC ta được: DO/OH = BM/MC = 1
=> DH // BC (định lí chùm đường thẳng đồng quy đảo)
Xét ∆ ADH và ∆ FEC có:
AD = EF ( t/c đoạn chắn) ; DH = EC (t/c đoạn chắn) ; ^ADH = ^FEC => ∆ ADH = ∆ FEC (c-g-c)
=> AH = CF (2)
Từ (1) và (2) => CF = DK (đpcm)
GL
Do EF//AB⇒\(\frac{CF}{CA}=\frac{EF}{AB}\)⇒\(\frac{CF}{EF}=\frac{AC}{AB}\)(1)
Dựng MG//AC và MM là trung điểm cạnh BC
⇒GM là đường trung bình ΔABC
=⇒G là trung điểm cạnh AB ⇒AG=BG
Do DK//GM⇒\(\frac{AD}{AG}=\frac{DK}{GM}\)⇒\(\frac{AD}{BG}=\frac{DK}{GM}\)
=> \(\frac{DK}{AD}=\frac{GM}{BG}=\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{CF}{EF}=\frac{DK}{AD}\)
Mà tứ giác ADEF là hình bình hành (vì EF//AD và DE//AF) nên AD=EF
=> CF=DK (đpcm)
Nguồn: thuynga
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
M A B C I D E
a) Cm AD=DE=CE
Xét ΔABC , ta có:
\(\begin{cases} I là trung điểm AM(gt) \\ ID//ME( BD//ME,I \in BD) \end{cases} \)
=> AD=DE (1)
Xét ΔBDC, ta có:
\(\begin{cases} M là trung điểm BC( gt)\\ ME//BD(gt) \end{cases}\)
=> DE=CE (2)
Từ (1) và (2) suy ra: AD = DE = CE
b) Cm \(ID=\dfrac{1}{4}BD\)
Xét ΔAEM, ta có:
\(\begin{cases} I là trung điểm AM(gt)\\ D là trung điểm AE (AD=DE) \end{cases}\)
=> ID là đường trung bình ΔAEM.
=> \(ID\parallel ME, ID=\dfrac{1}{2}ME\)=> 2ID=ME
Xét ΔBDC, ta có:
\(\begin{cases} M là trung điểm BC(gt)\\ E là trung điểm CD(DE=CE) \end{cases} \)
=> ME là đường trung bình ΔBDC
=>\(ME\parallel BD, ME=\dfrac{1}{2} BD\)
Mà : ME=2ID(cmt)
Suy ra: \(2ID=\dfrac{1}{2}BD\)
\(ID=\dfrac {1}{2}BD:2\)
\(ID=\dfrac{1}{4}BD\)(đpcm)
Sửa đề: Qua M kẻ đoạn thẳng song song với BD, cắt AC tại E
Ta có: ME//BD(gt)
⇔ID//ME
Xét ΔAME có
I là trung điểm của AM(gt)
ID//AE(cmt)
Do đó: D là trung điểm của AE(Định lí 1 về đường trung bình của tam giác)
hay AD=DE(đpcm)