Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
\(\widehat{BMD}=\widehat{AMC}\left(đối.đỉnh\right)\)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: \(\widehat{DBM}=\widehat{MCA}\left(\Delta AMC=\Delta DMB\right)\)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\)
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
\(AM=MC\left(=\dfrac{1}{2}AD=\dfrac{1}{2}BC\right)\)
=> ΔAMK=ΔCMK(c.c.c)
=> \(\widehat{MKA}=\widehat{MKC}=180^0:2=90^0\Rightarrow MK\perp AC\)
Mà AC//BD(ABDC là hình chữ nhật)
\(\Rightarrow MK\perp BD\)
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
ˆBMD=ˆAMC(đối.đỉnh)BMD^=AMC^(đối.đỉnh)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: ˆDBM=ˆMCA(ΔAMC=ΔDMB)DBM^=MCA^(ΔAMC=ΔDMB)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà ˆBAC=900BAC^=900
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
AM=MC(=12AD=12BC)AM=MC(=12AD=12BC)
=> ΔAMK=ΔCMK(c.c.c)
=> ˆMKA=ˆMKC=1800:2=900⇒MK⊥ACMKA^=MKC^=1800:2=900⇒MK⊥AC
Mà AC//BD(ABDC là hình chữ nhật)
⇒MK⊥BD
A B C D E M 1 2 1 2
Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{B_2}=\widehat{C_1}\)
\(\Rightarrow180^o-\widehat{B_2}=180^o-\widehat{C_1}\)
hay \(\widehat{DBE}-\widehat{B_2}=\widehat{ECD}-\widehat{C_1}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}\) (*)
Xét \(\Delta ABD,\Delta ACE\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{B_1}=\widehat{C_2}\) ( theo (*) )
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)
\(\Rightarrow AD=AE\) ( cạnh t/ứng ) (đpcm)
b) Ta có: \(BM=MC\left(=\frac{1}{2}BC\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow BM+BD=MC+CE\)
\(\Rightarrow MD=ME\) (**)
Xét \(\Delta DAM,\Delta MAE\) có:
\(AD=AE\) ( theo phần a )
\(MD=ME\) ( theo (**) )
\(AM\): cạnh chung
\(\Rightarrow\Delta DAM=\Delta MAE\left(c-c-c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{MAE}\) ( góc t/ứng )
\(\Rightarrow AM\) là tia phân giác của \(\widehat{DAE}\left(đpcm\right)\)
Vậy...
Ta có hình vẽ
A B C D E M a/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (vì \(\Delta\)ABC cân) (*)
Mà \(\widehat{ABC}\)+\(\widehat{ABD}\)=1800 (kề bù) (**)
và \(\widehat{ACB}\)+\(\widehat{ACE}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)
Ta có: AB = AC (GT) (2)
BD = CE (GT) (3)
Từ (1),(2),(3) => tam giác ABD = tam giác ACE
=> AD = AE (2 cạnh tương ứng) (đpcm)
b/ Xét tam giác AMD và tam giác AME có:
AD = AE (đã chứng minh ở câu a)
AM: cạnh chung
\(\begin{cases}BM=MC\\BD=CE\end{cases}\)\(\Rightarrow\) MB+BD=MC+CE \(\Rightarrow\)MD = ME
=> tam giác AMD = tam giác AME (c.c.c)
=> \(\widehat{DAM}\)=\(\widehat{EAM}\) (2 góc tương ứng)
=> AM là phân giác góc DAE (đpcm)