K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

a. Do AD là phân giác BAC

=> BAD=CAD=1/2BAC=1/2.120=60*

Xét tam giác AED có 

EAD+EDA+AED=180*

60*+EDA+90*=180*

=> EDA=30*

Xét tam giác EAD và tam giác FAD có

AED=AFD=90*

AD chung

EAD=FAD=60*

=> tam giác EAD = tam giác FAD(ch-gn)

=> ED=FD; EDA=FDA=30*

Ta có EDF=EDA+FDA=2EDA=2.30*=60*

Từ ED=FD => tam giác EDF cân tại D

Xét tam giác cân DEF có EDF=60*

=> tam giác DEF là tam giác đều

16 tháng 6 2018

A B C D E F M a b

a) Ta có AD là phân giác ^BAC, DE và DF lần lượt vuông góc AB;AC nên DE=DF

Xét \(\Delta\)AFD vuông tại F có ^DAF=1/2^BAC=600 => ^ADF=300

Tương tự tính được: ^ADE=300 = >^ADF+^ADE=^EDF=600

Xét \(\Delta\)DEF: ^EDF=600; DE=DF => \(\Delta\)DEF là tam giác đều.

b) Dễ thấy ^CAM=1800-^BAC=600.

CM // AD => ^ACM=^DAC=1/2^BAC=600

Từ đó suy ra \(\Delta\)ACM là tam giác đều.

c) Do \(\Delta\)ACM đều => CM=AC => CM-CF=CA-CF=AF

=> a - b = AF. Lại có: Tam giác AFD là tam giác nửa đều => AF=1/2AD

=> a - b = 1/2AD => AD= 2(a - b).

Vậy .........

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

hỏi từ năm trước xong mốc meo không ai trả lời mới chán chớ..

22 tháng 4 2016

3 bạn nhanh và đúng nhất sẽ được h nhiều nhất. 100%