Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi H là giao của PN và BC, I là giao của MP và BC
Ta có \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)
Mặt khác áp dụng định lý Talet ta có:
\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+CH}{BC}=\frac{CI}{BC}+\frac{CH}{BC}\left(2\right)\)
Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)
Vì \(\Delta\)ABC đồng dạng với \(\Delta\)PHI (gg)
=> \(\frac{IH}{BC}=\frac{PH}{AB}\)mà \(\frac{PH}{AB}=\frac{PQ}{AQ}\left(4\right)\)
Từ (1)(2)(3)(4) => \(\frac{AN}{AC}+\frac{NC}{AC}=....=\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=1\left(đpcm\right)\)
b) Từ câu (a) ta có:
\(\frac{AM\cdot AN\cdot PQ}{AB\cdot AC\cdot AQ}=\frac{CI\cdot AN\cdot IH}{BC\cdot AC\cdot BC}=\frac{CI\cdot BH\cdot IH}{BC\cdot BC\cdot BC}=\frac{1}{27}\)
=> \(CI\cdot BH\cdot IH=\frac{BC^3}{27}\)
Mặt khác áp dụng BĐT Cosi cho 3 số không âm ta có:
\(CI\cdot BH\cdot IH\le\frac{\left(CI+IH+HB\right)^3}{3^3}=\frac{1}{27}\)
A B C H Q I P M N
Gọi H = PN ∩ BC; I = MP ∩ BC
a, Ta có: \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)
Mặt khác, áp dụng định lý Ta-lét, ta có:
\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+HI}{BC}=\frac{CI}{BC}+\frac{HI}{BC}\left(2\right)\)
Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)
Vì ΔABC đồng dạng với ΔPHI (g.g)
=> \(\frac{HI}{BC}=\frac{PH}{AB}\) mà \(\frac{PH}{AB}=\frac{PQ}{AB}\)
nên \(\frac{HI}{BC}=\frac{PQ}{AB}\left(4\right)\)
Từ (1), (2), (3), (4) suy ra:
\(\frac{AN}{AC}+\frac{NC}{AC}=\frac{AN}{AC}+\frac{CI}{BC}+\frac{HI}{BC}\)
\(=\frac{AN}{AC}+\frac{AM}{AB}+\frac{PQ}{AQ}=1\left(đpcm\right)\)
b, Từ câu a ta có:
\(\frac{AM.AN.PQ}{AB.AC.AQ}=\frac{CI.AN.IH}{BC.AC.BC}=\frac{CI.BH.IH}{BC.BC.BC}=\frac{1}{27}\)
\(\Leftrightarrow CI.BH.IH=\frac{1}{27}.BC^3\)
Áp dụng BĐT Cô-si cho 3 số không âm, ta có:
\(CI.BH.IH\le\frac{\left(CI+BH+IH\right)^3}{3^3}=\frac{1}{27}.BC^3\)
Dấu "=" xảy ra <=> CI = BH = IH
<=> Q là trung điểm của BC và AP\(=\frac{2}{3}AQ\)
Bài 1:
A B C D E M N I J
Gọi E là giao điểm của phân giác AD với MN.
Qua E, kẻ đoạn thẳng IJ vuông góc với AD \(\left(I\in AB,J\in AC\right)\)
Gọi H là điểm đối xứng với M qua AD.
Ta thấy rằng \(\widehat{MEI}=\widehat{HEJ}\Rightarrow\widehat{HEJ}=\widehat{JEN}\) hay EJ là phân giác trong góc NEH.
Do \(EJ\perp EA\) nên EA là phân giác ngoài tại đỉnh E của tam giác NEH.
Theo tính chất tia phân giác trong và ngoài của tam giác, ta có:
\(\frac{NJ}{HJ}=\frac{EN}{EH}=\frac{AN}{AH}\Rightarrow\frac{\overline{NJ}}{\overline{NA}}:\frac{\overline{HJ}}{\overline{HA}}=-1\Rightarrow\left(AJNH\right)=-1\)
Áp dụng hệ thức Descartes, ta có \(\frac{2}{AJ}=\frac{1}{AH}+\frac{1}{AN}=\frac{1}{AM}+\frac{1}{AN}=\frac{3}{a}\)
\(\Rightarrow AJ=\frac{2a}{3}\)
Vậy J cố định, mà AD cố định nên IJ cũng cố định. Vậy thì E cũng cố định.
\(AJ=\frac{2a}{3}\Rightarrow AE=\frac{2.AD}{3}\) hay E là trọng tâm tam giác ABC.
Tóm lại MN luôn đi qua trọng tâm tam giác ABC.
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
Gọi I là trung điểm của BC
Xét tam giác ABC vuông tại A có AI là đường trung tuyến nên \(AI=\frac{1}{2}BC\)
Theo quan hệ đường xiên và đường vuông góc ta có \(AH\le AI\Rightarrow AH\le\frac{1}{2}BC\)\(\Rightarrow\frac{AH}{BC}\le\frac{1}{2}\)(1)
Ta có \(\frac{S_{AMN}}{S_{ABC}}=\frac{\frac{1}{2}AM.AN}{\frac{1}{2}AH.BC}=\frac{AH^2}{AH.BC}=\frac{AH}{BC}\)(2)
Từ (1) (2) suy ra \(\frac{S_{AMN}}{S_{ABC}}\le\frac{1}{2}\)