K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

a

Áp dụng định lý Thales ta có:

\(\frac{BP}{AB}=\frac{BM}{BC};\frac{CN}{AC}=\frac{CM}{BC}\Rightarrow\frac{PB}{AB}+\frac{CN}{AC}=\frac{BM}{BC}+\frac{CM}{BC}=1\)

b

Gọi \(S_{BPM}=a^2;S_{CMN}=b^2;S_{ABC}=S^2\)

PM//AC nên \(\Delta\)BPM ~ \(\Delta\)BAC =>\(\frac{S_{BPM}}{S_{ABC}}=\frac{a^2}{S^2}=\frac{BM^2}{BC^2}\Rightarrow\frac{BM}{BC}=\frac{a}{S}\)

MN//AB nên \(\Delta\)CMN ~ \(\Delta\)CBA => \(\frac{S_{CMN}}{S_{ABC}}=\frac{b^2}{S^2}=\frac{CM^2}{BC^2}\Rightarrow\frac{CM}{BC}=\frac{b}{S}\)

\(\Rightarrow\frac{a}{S}+\frac{b}{S}=1\Rightarrow a+b=S\Rightarrow S^2=\left(a+b\right)^2\)

\(\Rightarrow S_{AMNP}=\left(a+b\right)^2-a^2-b^2=2ab\le\frac{\left(a+b\right)^2}{2}=\frac{S^2}{2}\) ( không đổi )

Vậy Max \(S_{AMNP}=\frac{S_{ABC}}{2}\) khi M là trung điểm của BC.

21 tháng 3 2020

Cảm ơn nha 

2 tháng 3 2020

Câu c có khá nhiều cách giải,nhưng mình trình bày 1 cách thôi nhá :)

2 tháng 3 2020

Câu c là lấy H đối xừng với B qua M,Kẻ đường thẳng song song với AE vắt EM,AF lần lượt tại V và W ạ

28 tháng 2 2020

tui cx cần câu này nhưng ko có ai tl kìa

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

26 tháng 2 2018

a) Ta có ngay AH.BC = AB.AC \(\left(=\frac{1}{2}S_{ABC}\right)\)

b) Xét tứ giác NMPA có 3 góc vuông nên NMPA là hình chữ nhật.

c) Ta có ngay \(\Delta MPC\sim\Delta AHC\left(g-g\right)\Rightarrow\frac{MP}{AH}=\frac{PC}{HC}\Rightarrow\frac{NA}{PC}=\frac{AH}{HC}\)

Lại có \(\widehat{NAH}=\widehat{PCM}\)  (Cùng phụ với góc HAC)

\(\Rightarrow\Delta NAH\sim\Delta PCH\left(c-g-c\right)\Rightarrow\widehat{NHA}=\widehat{PHC}\)

Vậy nên \(\widehat{NHP}=\widehat{NHA}+\widehat{AHP}=\widehat{PHC}+\widehat{AHP}=\widehat{AHC}=90^o\)

d) Dp ANMP là hình chữ nhật nên NP = AM

Lại có AM là đường xiên nên \(AM\ge AH\Rightarrow NP\ge AH\)

Vậy NP ngắn nhất khi M trùng H.

9 tháng 12 2018

mình không biết