K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

https://olm.vn/hoi-dap/question/1311100.html

1 tháng 10 2021

a. Ta có \(M,D\) đối xứng qua \(AB\)

\(\rightarrow AD=AM\)

Lại có \(M,E\)  đối xứng qua  \(AC\rightarrow AM=AE\)

\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN

b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)

\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)

Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)

Mà \(\Delta ADE\) cân tại \(A\)

\(\rightarrow\widehat{ADE}=\widehat{AED}\)

\(\rightarrow\widehat{IMA}=\widehat{KMA}\)

 \(\rightarrow MA\) là phân giác \(\widehat{IMK}\)
c. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)
Tương tự \(\widehat{MAE}=2\widehat{MAC}\)
\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)
\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)
\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)
 
8 tháng 8 2021

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: ˆEAB=ˆDAB(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: ˆDAC=ˆFAC(hai góc tương ứng)

Ta có: ˆEAF=ˆEAB+ˆBAD+ˆCAD+ˆFAC

=2⋅(ˆBAD+ˆCAD)

=2⋅600=1200

Tham khảo:

undefined

18 tháng 8 2017

Cho tam giác nhọn ABC, M thuộc BC. Gọi D,E lần lượt là điểm đối xứng của M qua AB và AC

A) Chứn minh tam giác ADE cân

b) DE cắt AB và AC thứ tự tại I và K. Chứng minh MA là đường phân giác

c) Cho biết góc BAC = 70 độ Tính góc ADE 

 giúp dùm em ạ

18 tháng 8 2019

a) Gọi giao diểm của DM và AB là P, giao điểm của ME và AC là Q.

Xét tam giác ADP và AMP có:

AP chung, APD=APM=90*, DP=PM

=> tam giác ADP=tam giác AMP=>AD=AM

Tương tự, ta chúng minh được tam giác AMQ=tam giác AEQ=>AM=AE

Do AD=AM,AM=AE=> AD=AE=> tam giác ADE cân tại A.

b) Gọi giao điểm của DE và AM là F.

Ta có: AI là phân giác góc DAF=> DA/AF=DI/IF

AK là phan giác góc FAE=> AE/AF=KE/FK

mà AD=AE=>DI/IF=KE/FK=>DI/KE=IF/KF(1)

Tự chứng minh tam giác DIP=MIP=>DI=IM

tam giác KMQ=tam giác KEQ=>KM=KE

Thay điều trên vào (1)=> IM/KM=IF/IK=>AM là phân giác góc IMK.

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Ta có: AE=AD

AF=AD

Do đó: AE=AF

b: Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

c: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN

1 tháng 8 2018

a.Tam giác AMD có AB vừa là đường trung tuyến vừa là đường cao

=> Tam giác AMD cân tại A

=> AB cũng đồng thời là đường phân giác của tam giác AMD

=> góc MAB = góc BAD                           

Tương tự ta CM được AC là đường trung tuyến của tam giác AME

=> góc CAM = góc CAE

=> \(\widehat{DAE}=\widehat{MAB}+\widehat{BAD}+\widehat{CAM}+\widehat{CAE}\)\(=2\widehat{BAC}=140\sigma\)

b.Tam giác IMD có IB vừa là đường cao vừa là đường trung tuyến 

=> IB là đường phân giác của góc DIM

=> IB là đường phân giác ngoài của tam giác IMK

Tương tự ta có : IC là đường phân giác của góc MKE

=> IC là đường phân giác ngoài của tam giác IMK

Tam giác IMK có 2 đường phân giác ngoài kẻ từ I và K cắt nhau tại A

=> MA là đường phân giác trong của tam giác IMK

=> MA là đường phân giác của góc IMK

c.Tam giác ADM cân tại A => AD=AM

Tam giác AEM cân tại A => AE=AM

=> AD=AE => tam giác ADE cân tại A

Tam giác ADE cân tại A có góc ở đỉnh DAE ko đổi ( = 2* góc ABC )

=> Cạnh đáy DE có đọ dài nhỏ nhất khi cạnh bên AD có độ dài nhỏ nhất

=> AM có độ dài nhỏ nhất 

=> AM là đường cao của tam giác ABC 

=> M là chân đường cao kẻ từ A xuống BC

a: M đối xứng E qua AB

=>AB là đường trung trực của ME

=>AB\(\perp\)ME tại I và I là trung điểm của ME

Ta có: M đối xứng F qua AC

=>AC là đường trung trực của MF

=>AC\(\perp\)MF tại K và K là trung điểm của MF

Xét tứ giác AIMK có

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

=>AIMK là hình chữ nhật

b: Ta có: AKMI là hình chữ nhật

=>AK//MI và AK=MI; KM//AI và KM=AI

Ta có: MI//AK

I\(\in\)ME

Do đó: IE//AK

Ta có: AK=IM

IM=IE

Do đó: AK=IE

Ta có: AI=MK

MK=KF

Do đó: AI=KF

Ta có: AI//MK

K\(\in\)MF

Do đó: AI//KF

Xét tứ giác AKIE có

AK//IE

AK=IE

Do đó: AKIE là hình bình hành

=>KI//AE và KI=AE

Xét tứ giác AIKF có

AI//KF

AI=KF

Do đó: AIKF là hình bình hành

=>KI//AF và KI=AF

Ta có: KI//AF

KI//AE

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

Ta có: KI=AE

KI=AF

Do đó: AE=AF

mà E,A,F thẳng hàng

nên A là trung điểm của EF