K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDAF và ΔEBD có

DA=EB

góc DAF=góc EBD(=120 độ)
AF=BD

=>ΔDAF=ΔEBD

=>DF=ED

Xét ΔFCE và ΔEBD có

FC=EB

góc FCE=góc EBD

CE=BD

=>ΔFCE=ΔEBD

=>FE=ED

=>FE=ED=DF

=>ΔDEF đều

Xét ΔBDE và ΔAFD có

BE=AD

góc EBD=góc DAF

AF=BD

=>ΔBDE=ΔAFD

=>DE=FD

Xét ΔBDE và ΔCEF có

BE=CF

góc DBE=góc ECF

BD=CE

=>ΔBDE=ΔCEF

=>DE=EF=FD

=>ΔDEF đều

10 tháng 1 2021

undefined

undefined

10 tháng 1 2021

giỏi đấy

12 tháng 2 2022

hành vi cop mạng của bn đã bj toi phát hiện :>

6 tháng 9 2017

26 tháng 10 2019

Xét \(\Delta EBD\)và \(\Delta FCE\)có:

          EC = DB (Vì \(\hept{\begin{cases}AB=BC\\AD=EB\end{cases}}\))

         \(\widehat{EBD}=\widehat{FCE}\)(Cùng là 2 góc ngoài của 1 tam giác đều)

         EB = FC (gt)

Suy ra \(\Delta EBD\)\(=\Delta FCE\left(c-g-c\right)\)

\(\Rightarrow DE=EF\)(1)

Chứng minh tương tự: \(\Delta EBD\)\(=\Delta DAF\left(c-g-c\right)\)

\(\Rightarrow DE=FD\)(2)

Từ (1) và (2) suy ra DE = EF = FD

Vậy tam giác DEF đều (đpcm)