K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P):   y = - x2a)      Vẽ parabol (P)b)     Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).c)       Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại MBài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + mCMR: (d) luôn cắt (P) tại 2 điểm phân biệta)      Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có...
Đọc tiếp

Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P):   y = - x2

a)      Vẽ parabol (P)

b)     Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).

c)       Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại M

Bài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

CMR: (d) luôn cắt (P) tại 2 điểm phân biệt

a)      Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị nhỏ nhất của biểu thức P =  khi m thay đổi

Bài 3. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt nằm bên phải trục tung

Bài 4. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m

Bài 5. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1

Tìm m sao cho (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2  sao cho

Bài 6. Cho parabol (P) : y = x2 và đường thẳng (d) : y = mx - m2 + m +1.

            a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).

            b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho .

0
10 tháng 8 2017

1.Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

10 tháng 8 2017

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

PTHĐGĐ là:

-x^2+x+2=0

=>x^2-x-2=0

=>(x-2)(x+1)=0

=>x=2; x=-1

=>B(2;-4); A(-1;-1)

M thuộc (P) nên M(x;-x^2)

\(\overrightarrow{BM}=\left(x-2;-x^2+4\right);\overrightarrow{BA}=\left(-3;3\right)\)

Theo đề, ta có: -3(x-2)+3(-x^2+4)=0

=>-3x+6-3x^2+12=0

=>-3x^2-3x+18=0

=>x^2+x-6=0

=>(x+3)(x-2)=0

=>x=-3 hoặc x=2

=>M(-3;-9); M(2;-4)

Bài 1: Cho 3 điểm A(1;2), B(2;-1), C(-1;0).a) 3 điểm A, B, C có thẳng hàng không? Vì sao?b) Viết phương trình đường thẳng AB, BC, AC.c) Có nhận xét gì về tam giác ABC?d) Lập phương trình đường cao AH.e) Xác định tâm và bán kính đường tròn ngoại tiếp tam giác ABC.f) Xác định điều kiện của D để tứ giác ABCD là hình bình hành. Bài 2: Cho 3 điểm A(1;3), B(-2;-3), C(-2;-5)a) Xác định m,n biết (d): y=xm+n đi qua C...
Đọc tiếp

Bài 1: Cho 3 điểm A(1;2), B(2;-1), C(-1;0).

a) 3 điểm A, B, C có thẳng hàng không? Vì sao?

b) Viết phương trình đường thẳng AB, BC, AC.

c) Có nhận xét gì về tam giác ABC?

d) Lập phương trình đường cao AH.

e) Xác định tâm và bán kính đường tròn ngoại tiếp tam giác ABC.

f) Xác định điều kiện của D để tứ giác ABCD là hình bình hành.

 

Bài 2: Cho 3 điểm A(1;3), B(-2;-3), C(-2;-5)

a) Xác định m,n biết (d): y=xm+n đi qua C thỏa bán 1 trong hai điều kiện sau:

1)Song song với AB

2) Cắt AB tại điểm có hoành độ -3,5

b) Tính:

1) Góc tạo bởi đường thẳng AB với Ox

2) Tính khoảng cách từ gốc tọa độ O với đường thẳng Ab

 

Bài 3: Cho đường thẳng (d):y=(m-2)x+2

a) Chứng minh (d) luôn fi qua một điểm cố định không thay đổi

b) Tìm m để khoảng cách từ O(0;0) đến (d) là bằng 1

c) Tìm m để khoảng cách từ O(0;0) đến (d) có giá trị lớn nhất

0
1 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{ax}\frac{1}{\sqrt{a}}+\sqrt{by}\frac{1}{\sqrt{b}}+\sqrt{cz}\frac{1}{\sqrt{c}}\)

\(\le\sqrt{\left(ax+by+cz\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{2S_{ABC}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(=\sqrt{\frac{abc}{2R}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{\frac{ab+bc+ca}{2R}}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)

1 tháng 4 2017

có bị ngược dấu ko nhỉ ?