K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆ vuông DCB và ∆ vuông EBC ta có : 

BC chung 

ABC = ACB ( ∆ABC đều )

=> ∆DCB = ∆EBC ( ch-gn)

b) Gọi giao điểm AH và BC là K

Vì ∆DCB = ∆EBC (cmt)

=> DB = EC 

Xét ∆ vuông DHB và ∆ vuông EHC ta có : 

DB = EC (cmt)

DHB = EHC ( đối đỉnh)

=> ∆DHB = ∆EHC (cgv-gn)

Vì DB = EC 

AB = AC ( ∆ABC đều )

=> AD = AE 

=> ∆ADE cân tại A 

Xét ∆AHD và ∆AHE có : 

AH chung 

ADE = AED ( ∆ADE cân tại A )

AD = AE 

=> ∆AHD = ∆AHE (c.g.c)

=> DAH = EAH 

Hay AH là phân giác DAE 

Mà ∆ADE cân tại A(cmt)

=> AH là trung trực DE 

=> AH là trung trực BC 

d) Vì ∆ABC đều 

=> ABC = ACB = BAC = 60° 

Vì ∆ADE cân tại A 

Mà BAC = 60° 

=> ∆ADE đều 

=> ADE = AED = DAE = 60° 

Ta có : 

ADE + EDC = 90° 

=> EDC = 90° - 60° = 30° 

Mà DC//BI 

=> EDC = CBI = 30° ( đồng vị )

Mà ACB + BCI = 180° ( kề bù)

=> BCI = 180° - 60° = 120° 

Xét ∆BCI có : 

CBI + BIC + ICB = 180° 

=> BIC = 180° - 120° - 30° = 30° 

=> CBI = CIB = 30° 

=> ∆BCI cân tại C 

Mà DC//BI 

=> ADC = DBI = 90° 

Hay ∆ABI vuông tại B

4 tháng 5 2016

a/ Xét hai tg vuông BCD và CBE có

^ABC=^ACB (ABC là tg đầu)

BC chung

=> tg BCD=tg CBE (theo trường hợp cạnh huyền và góc nhọn tương ứng bằng nhau)

b/ 

Ta có tg BCD=tg CBE (cmt) => ^HBC=^HCB (Tương ứng cùng phụ với góc ^ACB=^ACB)

=> tg BHC cân => HB=HC

Xét hai tg vuông HDB và CHE có

HB=HC (cmt)

^BHD=^CHE (đối đỉnh)

=> tg HDB=tg CHE (theo trường hợp cạnh huyền và góc nhọn tương ứng bằng nhau)

c/ Xét tam giác ABC có

BE, CD là đường cao => BE và CD cũng là trung trực (trong tam giác đều đường cao đồng thời là đường trung tuyến và đường trung trực)

=> H là giao của 3 đường trung trực => AH là trung trực của BC (Trong tam giác 3 đường trung trực đồng quy)

d/ Xét tam giác ABC có

CD là phân giác của ^ACB (trong tg đều đường cao đồng thời là đường phân giác)

=> ^ACD=^BCD (1)

CD//BI => ^BCD=^CBI (góc so le trong) (2)

và ^ACD=^BIC (Góc đồng vị) (3)

Từ (1) (2) (3) => ^CBI=^BIC => tg BCI cân tại C (có 2 góc ở đáy bằng nhau)

+ Ta có CD vuông góc AB

CD//BI

=> BI vuông góc AB => tg ABI vuông tại B


 

28 tháng 5 2022

d) △ABC đều có: CD là đường cao \(\Rightarrow\)CD cũng là phân giác.

\(\Rightarrow\widehat{BCD}=\widehat{ACD}\).

Mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{IBC}\\\widehat{ACD}=\widehat{CIB}\end{matrix}\right.\) (DC//BI)

\(\Rightarrow\widehat{IBC}=\widehat{CIB}\)

\(\Rightarrow\)△BCI cân tại C.

28 tháng 5 2022

mình mới nghĩ được đến đây, rất xin lỗi bạn, vẫn còn ý đầu của câu d, nếu mình nghĩ ra sẽ làm giúp bạn nha

undefined

undefined

7 tháng 5 2017

Bạn tự vẽ hình ik nha

a. Xét tam giác ABD và tam giác ACE có:

góc D = góc E = 90* (gt)

AB = AC (gt)

góc A chung

=> tg ABD = tg ACE (c. huyền-g. nhọn)

b. Vì H là giao điểm của 2 dường cao BD và CE 

Nên AH cũng là đường cao cùa tg ABC hay AH vuông góc BC

Do tg ABC là tam giác cân => AI là đường cao đồng thời cũng là dường trung tuyến => BI = CI => I là trung điểm của BC

c.Ta có: góc ACE = góc ABD (doc tg ABD = tg ACE)

 và góc ABC = góc ACB

=> góc DBC = góc ECB

 Ta có: BD vuông góc AC (gt)

              CF vuông góc AC (gt)

=>          CF song song BD (2 dường thẳng cùng vuông góc với 1 dường thẳng)

=>      góc DBC = góc BCF ( so le trong)

Mà góc DBC = góc ECB

=> góc ECB = góc BCF

=> BC lá tia phân giác của góc ECF

a: Xét ΔDBC vuông tại D và ΔECB vuông tại E có

BC chung

\(\widehat{DBC}=\widehat{ECB}\)

Do đó:ΔDBC=ΔECB

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

DB=EC

\(\widehat{HBD}=\widehat{HCE}\)

Do đó: ΔHDB=ΔHEC

c: Ta có: AB=AC
HB=HC

Do đó: AH là đường trung trực của BC

a: Xét ΔDBC vuông tại D và ΔECB vuông tại E có

BC chung

\(\widehat{DBC}=\widehat{ECB}\)

Do đó:ΔDBC=ΔECB

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

DB=EC

\(\widehat{HBD}=\widehat{HCE}\)

Do đó: ΔHDB=ΔHEC

c: Ta có: AB=AC
HB=HC

Do đó: AH là đường trung trực của BC