K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

6

a. Do tam giác ABC là tam giác đều nên CB = CA. Lại do CB = CD nên CD = CA, hay tam giác ACD cân tại C.

Khi đó do CE là đường cao nên đồng thời là trung tuyến. Vậy thì E là trung điểm AD, hay AE = DE.

Do ^ACB là góc ngoài tại đỉnh C của tam giác ACD nên ^ACB=2^CAD⇒^CAD=30o.

Vậy thì ^BAD=90o, hay tam gíac ABD vuông tại A.

b) Ta thấy ^FAD=^FAC+^CAD=30o+30o=60o.

Lại thấy FE là đường trung tuyến đồng thời là đường cao nên tam giác AFD cân. Tóm lại tam giác AFD đều.

Do C là giao của 3 đường cao trong tam giác đều FAD nên đồng thời nó cũng là trọng tâm tam giác.

3 tháng 5 2019

tam giác ABC đều (gt)

=> AB = AC = BC (đn)

mà BC = CD (gt)

=> AC = CD  

CE _|_ AD tại E 

AC là đường xiên của hình chiếu  AE

CD là đường xiên của hình chiếu CD 

=> AE = ED (đl)

21 tháng 5 2020

a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE