Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
Gọi M là trung điểm của BC:
Do tam giác ABC đều nên tâm đường tròn nội tiếp tam giác ABC là trọng tâm, tâm đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago vào tam giác ABM ta có:
Chọn đáp án B.
Do O là tâm của đường tròn ngoại tiếp tam giác đều ABC nên O đồng thời là trọng tâm tam giác ABC.
Gọi M là trung điểm BC:
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{BC}{2}\cdot h\)
Bán kính là:
\(R=\dfrac{a\cdot b\cdot c}{4\cdot S}=\dfrac{b\cdot b\cdot BC}{4\cdot\dfrac{BC\cdot h}{2}}=\dfrac{b\cdot b\cdot BC}{2\cdot BC\cdot h}=\dfrac{b^2}{2h}\)
Ta có: O là trọng tâm của △ ABC ⇒ AO là đường trung tuyến của △ ABC ⇒ AO là đường cao của △ ABC ( Trong tam giác cân đường đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao và đường trung trực )
⇒ HB = HC = \(\dfrac{BC}{2}\)
⇒ OH = \(\dfrac{AH}{3}=\dfrac{h}{3}\) ( trong tam giác 3 đường trung tuyến cắt nhau tại 1 điểm gọi là trọng tâm của tam giác và cách đáy 1 khoảng = \(\dfrac{1}{3}\) chiều dài mỗi đường )
Xét tam giác vuông ABH có
\(BH^2=AB^2+AH^2=b^2+h^2\)
Xét tam giác vuông OBH có
BO = R = \(\sqrt{BH^2+OH^2}=\sqrt{b^2-h^2+\dfrac{h^2}{9}}=\dfrac{1}{3}\sqrt{9b^2-8h^2}\)
Ta có R là bán kính đường tròn ngoại tiếp một tam giác đều cạnh a thì \(R=\frac{a\sqrt{3}}{a}\) (*)
Dựng 2 tam giác đều BDF và CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^0;\widehat{CGD}=\widehat{CED}=60^o\)
=> BDEF và CDEG là các tứ giác nội tiếp
Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các tam giác đềuy BDF và CDG
Theo (*) ta có: \(R_1=\frac{BD\sqrt{3}}{3};R_2=\frac{CD\sqrt{3}}{3}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}\)
Mặt khác \(\left(BD+CD\right)^2\ge4\cdot BD\cdot CD\)
=> BD.CD\(\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)
Đẳng thức xảy ra khi và chỉ khi
BD=CD, nghĩa là R1;R2 đạt giá trị lớn nhất bằng \(\frac{R^2}{4}\) khi D là trung điểm BC
Kiểm tra lại đề nha bạn. Chắc chắn là thiếu giả thiết rồi đó.