Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
*S ABCD = S ABC + S ACD
Hay
S ABCD = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 + S 7 + S 8
*Vì MB = MC nên:
S1 + S2 = S ABC : 2 ( Tam giác ABM và ABC có chung đường cao hạ từ A và BM = BC : 2 )
*Tương tự: S 7 + S 8 = S ACD : 2 ( Tam giác CED và ACD có chung đường cao hạ từ C và DE = AD : 2 )
*Do đó:
S 1 + S 2 + S 7 + S 8 = S 3 + S 4 + S 5 + S 6 = S ABCD : 2
*Lại có:
S 2 + S 3 = S 5 + S 6 (Hai tam giác BME và CME có chung đường cao hạ từ E và BM = CM)
S 5 + S 8 = S 3 + S 4 (Hai tam giác AME và DME có chung đường cao hạ từ M và ED = EA)
==>S 2 + S 8 = S 4 + S 6
*Vì S 1 + S 7 + (S 2 + S 8) = S 3 + S 5 + (S 4 + S 6) mà S 2 + S 8 = S 4 + S 6
Nên S 1 + S 7 = S 3 + S 5
==>S 3 + S 5 = 3 cm2 + 5 cm2 = 8 cm2
Hay SEHKMN = 8 cm2
Đáp số : 8 cm2
Nối C với D.Ta thấy CBD hay CDA =1/2 ABC=ABC:2=90:2=45(cm vuông)
Ta thấy AKD,KED,ECD có chung đường cao và đều có đáy =1/3 đáy AC. Vậy suy ra các hình AKD,KED,ECD=1/3CDA=45:3=15(cm vuông)
AED=2/3 CDA=45x2/3=30 (cm vuông) hoặc AED=ADK+EKD=15+15=30(cm vuông)
Đ/S:30 cm vuông