Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
a: Xét ΔABF có
AE vừa là đường cao, vừa là phân giác
nen ΔABF cân tại A
b: Xét tứ giác HFKD có
HF//DK
HF=DK
Do đó: HFKD là hình bình hành
=>DH//KF và DH=KF
c: Xét ΔABC co AB<AC
nên góc C<góc ABC
A A A B B B C C C D D D M M M N N N Vì MD//AC,mà \(\widehat{NAD},\widehat{MDA}\)là 2 góc ở vị trí so le trong nên suy ra \(\widehat{NAD}=\widehat{MDA}\left(1\right)\)
Lập luận tương tự thì ta cũng có \(\widehat{NDA}=\widehat{MAD}\left(2\right)\)
Mà theo giả thiết thì AD là tia phân giác góc BAC nên \(\widehat{MAD}=\widehat{NAC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{NAD}=\widehat{MAD}=\widehat{NDA}=\widehat{MDA}\left(4\right)\)
Suy ra \(180^0-\widehat{MAD}-\widehat{MDA}=180^0-\widehat{NAD}-\widehat{NDA}\Rightarrow\widehat{AMD}=\widehat{DNA}\)
Vậy \(\widehat{AMD}=\widehat{DNA}\)
b/ Từ (4) suy ra DA là tia phân giác của góc MDN
Vậy DA là tia phân giác của góc MDN
P/s: Cách của mình dài dòng lắm, chưa chắc gì đã chặt chẽ nữa
\(\widehat A = 120^\circ \)nên \(\widehat {DAE} = 60^\circ \)(AD là phân giác của góc A).
Ta có: DE // AB nên \(\widehat {CED} = \widehat {EAB} = 120^\circ \)(hai góc đồng vị). Ba điểm A, E, C thẳng hàng nên góc AEC bằng 180°
\(\Rightarrow \widehat {AED} = 180^\circ - \widehat {CED} = 180^\circ - 120^\circ = 60^\circ \)
Tam giác ADE có \(\widehat {EAD} = \widehat {ADE}\) (\(=60^0\)) nên là tam giác cân.
Mà \(\widehat {DEA} = 60^\circ \)
Do đó, tam giác ADE đều ( tam giác cân có 1 góc bằng \(60^0\)).