Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E
a)
Xét tam giác AMB có: MD là pg góc AMB
=> \(\frac{AD}{BD}=\frac{AM}{BM}\) ( 1 )
Xét tam giác AMC có: MD là pg góc AMC
=> \(\frac{AE}{CE}=\frac{AM}{CM}\)
Mà BM = CM
=> \(\frac{AE}{CE}=\frac{AM}{BM}\) ( 2 )
* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)
=> DE // BC. ( định lí Ta-lét đảo )
Vậy DE // BC.
b)
Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)
Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)
=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)
=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)
=> \(\frac{AD}{AB}=\frac{5}{8}\)
Xét tam giác ABC có: DE // BC
=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )
=> \(\frac{DE}{6}=\frac{5}{8}\)
=> DE = 3,75 ( cm ).
Vậy DE = 3,75 cm.
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Tam giác ABM có MD là p/giác
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)
b) Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)
Mà: MC = BM (GT)
\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)
c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)
Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)
Mà: BM = MC (GT)
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
=> DE // BC
a) Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)
nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)
vẽ hình đi bn
bài hình là phải có hình thì mới gọi là hình học chứ!
ai đồng ý thì tick
bạn ơi. phân giác của góc AMC cắt gì tại E?