Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé.
Ta có: B' là điểm đối xứng của B qua O( tâm đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow BB'\) là đường kính của đường tròn ngoại tiếp tam giác ABC \(\Rightarrow\Lambda BAB'\) và \(\Lambda BCB'\) là góc chắn nửa đường tròn ( đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'\perp AB\\B'C\perp BC\end{matrix}\right.\) Mà \(\left\{{}\begin{matrix}HC\perp AB\\AH\perp BC\end{matrix}\right.\) ( do H là trực tâm của tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'//HC\\AH//B'C\end{matrix}\right.\) \(\Rightarrow\) AB'CH là hình bình hành \(\Rightarrow\left\{{}\begin{matrix}AH//B'C\\AH=B'C\end{matrix}\right.\) \(\Rightarrowđpcm\)
Xét (O) có
ΔB'AB nội tiếp
BB' là đường kính
Do đó: ΔB'AB vuông tại A
Suy ra: B'A\(\perp\)BA
hay CH//A'B'
Xét (O) có
ΔB'CB nội tiếp
BB' là đường kính
Do đó: ΔB'CB vuông tại C
=>B'C\(\perp\)BC
hay B'C//AH
Xét tứ giác AHCB' có
AH//CB'
AB'//CH
Do đó:AHCB' là hình bình hành
Suy ra: \(\overrightarrow{AH}=\overrightarrow{B'C}\)
Xét (O) có
ΔB'AB nội tiếp
BB' là đường kính
Do đó: ΔB'AB vuông tại A
Suy ra: B'A\(\perp\)BA
hay CH//A'B'
Xét (O) có
ΔB'CB nội tiếp
BB' là đường kính
Do đó: ΔB'CB vuông tại C
=>B'C\(\perp\)BC
hay B'C//AH
Xét tứ giác AHCB' có
AH//CB'
AB'//CH
Do đó:AHCB' là hình bình hành
Suy ra: \(\overrightarrow{AH}=\overrightarrow{B'C}\)
a) Vì tam giác AFB đồng dạng với ACF(g.g) nên:
AF/AC=AB/AF hay AF^2=AB.AC => AF=căn(AB.AC) ko đổi
Mà AE=AF (T/cTtuyen) nên E, F cùng thuộc đường tròn bán kính căn(AB.AC)
b)Ta có: OI vuông góc với BC (T/ đường kính và dây)
Các điểm E, F, I cùng nhìn OA dưới 1 góc ko đổi 90 độ nên O,I,F,A,E cùng thuộc đường tròn đường kính OA
Ta có góc FIA=FOA(Cùng chắn cung FA trong đường tròn (OIFAE)
Mà góc FKE=FOA( Cùng bằng \(\frac{1}{2}\) góc FOE)
Suy ra góc FIA=FKE, nhưng hai góc này lại ở vị trí SLT nên KE//AB
A B C H B' O
Xét B thuộc đường tròn (O), B' đối xứng với B qua O => BB' là đường kính của (O)
=> AB' vuông góc AB. Mà CH vuông góc AB nên AB' // CH. Tương tự AH // B'C
Suy ra tứ giác AHCB' là hình bình hành => AH // B'C và AH = B'C => \(\overrightarrow{AH}=\overrightarrow{B'C}\)(đpcm).