Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ DK//CE
góc DKB=góc ACB
=>góc DKB=góc DBK
=>DK=DB=CE
Xét tứ giác DKEC có
DK//EC
DK=EC
=>DKEC là hình bình hành
=>DE cắt KC tại trung điểm của mỗi đường
=>I là trung điểm của KC
=>B,I,C thẳng hàng
kẻ DF vuong goc voi BC, FH vuong voi BC
tam giac BFD va CHE vuong tai F va H có
F=H(90do)
B=C
BD=CE
->2 tam giac = nhau (canh huyen-goc nhon)
->DF=EH
gọi Z là giao diem cua BC va DE
xet tam giac DFZ va FHZ có
DF=HE
F=H( 90 do )
goc DZF= goc HZE(doi dinh)
->2 tam giac = nhau (canh goc vuong-goc nhon)
->DZ=ZF->Z la trung diem cua DE
vì Z la trung diem cua MN mà I cung la trung diem cua MN ->Z=I ->BIC thang hang
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)
a) Vì AB = AC
=> \(\Delta ABC\) cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\) (hai góc ở đáy)
Ta có hình vẽ:
A B C D I E
a/ Vì tam giác ABC có AB = AC => \(\Delta\)ABC cân
=> \(\widehat{ABC}\)=\(\widehat{ACB}\) (đpcm)
b/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (đã chứng minh)
\(\widehat{BID}\)=\(\widehat{CIE}\) (đối đỉnh)
Mà tổng 3 góc trong tam giác = 1800
=> \(\widehat{BDI}\)=\(\widehat{CEI}\)
Ta có: BD = CE (GT)
DI = IE (GT)
=> \(\Delta\)BID = \(\Delta\)CIE
Ta có: \(\widehat{BID}\)+\(\widehat{DIC}\)=\(\widehat{DIC}\)+\(\widehat{CIE}\)=1800 (kề bù)
=> \(\widehat{BIC}\)=1800 hay B,I,C thẳng hàng
CHTT or link sau :
→ Câu hỏi của Nguyễn Hoàng Anh - Toán lớp 7 - Học toán với OnlineMath
A B C D E I
Ta có: △ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\) (1)
DF//AC\(\Rightarrow DF//EC\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{DFB}\left(2\right)\\\widehat{FDI}=\widehat{IEC}\left(3\right)\end{cases}}\)
Từ (1);(2) ⇒ ABC=DFB
⇒ △DFB cân tại D
⇒ BD=DF.
Mà BD=CE(gt) ⇒ CE=DF.
Xét △FDI và △CEI có:
DF=CE(cmt)
FDIˆ=IECˆ (cmt)
DI=IE(I là trung điểm DE)
⇒ △FDI = △CEI (c-g-c)
⇒ FID=EIC(HAI GÓC TƯƠNG ỨNG)
Ta có: DIC+CIE= 180
Mà FID=EIC (cmt)
⇒ DIC+DIF = 180
⇒ FIC=1800
Hay BIC=1800
⇒ 3 điểm B,I,C thẳng hàng (đpcm)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D
=> DB = DH
. Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt) => 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt => DPCM)
CHCUS BẠN HỌC GIỎI
TK MÌNH NHÉ