K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

a) 

C < 60 vì A + B + C = A + 3C ( VÌ B = 2C ) 

mà C = 60 =) A + 180 = 180 

=) A = 0 

Vậy C < 60 để A thõa mãn 

Vậy C < 60 

27 tháng 8 2016

Muon 

tam giác ABC là tam giác nhọn 

=) C < 90 độ 

=) C + B < 180 độ 

=) 3C < 180 độ 

=) C < 60 độ 

Vậy C < 60 độ để tam giác ABC là tam giác nhọn

27 tháng 8 2016

điểm D ở đâu z bn?

1 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath

17 tháng 1 2019

bạn kham khảo tại link dưới đây nhé.

câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath

4 tháng 4 2018

câu này dễ mà bạn tra mạng sẽ ra

1 tháng 3 2020

Bạn tự vẽ hình nha 

1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE

Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)

2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)

Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà  góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng ) 

Vậy DH=DC=DA

3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)

Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'

-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'

4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A

Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1) 

Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)

Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều 

Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)

=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm) 

Học tốt nhé 🙋‍♀️🙋‍♀️🙋‍♀️💗💗💗

15 tháng 10 2017

a)

  A B C 100*

=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o

100o + \(\widehat{B}+\widehat{C}\) = 180o

\(\widehat{B}+\widehat{C}\) = 180o - 100o

\(\widehat{B}+\widehat{C}\) = 80o

Góc B = (80o+50o):2 = 65o

=> \(\widehat{C}\) = 65o - 50o = 15o

Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o

b)

  80* A B C

Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o

\(\widehat{3A}+\widehat{2C}\) = 180o - 80o

\(\widehat{3A}+\widehat{2C}\) = 100o

=> \(\widehat{A}\) = 100o:(3+2).3 = 60o

\(\widehat{C}\) = 100o - 60o = 40o

Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o

9 tháng 2 2018

A B C O K

a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK

                 => \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\)    (1)

               + \(\widehat{OKB}\)là góc ngoài của tam giác AKC

                  =>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)

Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)

hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)

b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)

=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)

 Xét tam giác ABC có:

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)

=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)

Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)

Ta có: BO là tia phân giác của góc ACB

=>\(2\widehat{ABO}=\widehat{ABC}\)(**)

Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)

=>\(2\widehat{ACO}=\widehat{ACB}\)

=> CO là tia phân giác của góc ACB

11 tháng 8 2019

thank you